gọi m là trung điểm của đoạn thẳng cd biết cn bằng 4cm . tính cd
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ điểm N hạ \(ON\perp DC\)
ABCD là hình chữ nhật=>\(\left\{{}\begin{matrix}AB=DC=4cm\\AD=BC=2cm\end{matrix}\right.\)
mà \(ABCD\) là hình chữ nhật \(=>BC\perp CD=>BC//ON\)
mà \(NM=NB=>ON\) là đường trung bình \(\Delta MBC\)
\(=>ON=\dfrac{1}{2}BC=\dfrac{1}{2}.2=1cm\)
do ON là đường trung bình \(=>MO=OC=\dfrac{1}{2}MC\)
mà \(MC=DM=\dfrac{1}{2}DC=\dfrac{1}{2}.4=2cm\)
\(=>MO=\dfrac{1}{2}MC=\dfrac{1}{2}.2=1cm\)
\(=>OD=DM+OM=1+2=3cm\)
xét \(\Delta DNO\) vuông tại O\(=>DN=\sqrt{ON^2+DO^2}=\sqrt{3^2+1^2}=\sqrt{10}cm\)
Trên tia Ox, ta có OC<OD(2cm<8cm)
suy ra C nằm giữa O và D
suy ra OC+CD=OD
suy ra 4+CD=8 suy ra CD = 4(cm)
vì OC=CD(=4cm) và C nằm giữa O và D
Nên C là trung điểm của OD
Vì I là trung điểm của CD
nên CI=ID=CD:2=4:2=2(cm)
A B C D M P
Vẽ \(NP\perp AM\) tại P
\(\hept{\begin{cases}\text{có }AB=a\Rightarrow AM=\sqrt{AB^2+BN^2}=\frac{\sqrt{5}}{2}a\\\text{từ }CM:AM=AD=a\end{cases}}\Rightarrow MP=\frac{-2+\sqrt{5}}{2}a\)
Đặt ND = NP, ta có:
\(x^2+MP^2=MC^2+CN^2\)
\(x^2+\left(\frac{-2+\sqrt{5}}{2}\right)^2a^2=\frac{a^2}{4}+\left(a-x\right)^2\)
\(\Leftrightarrow x^2+\frac{9-4\sqrt{5}}{4}a^2=\frac{a^2}{4}+a^2-2ax+x^2\)
\(\Leftrightarrow a^2\left(\frac{9-4\sqrt{5}}{4}-\frac{1}{4}-1\right)=-2ax\)
\(\Leftrightarrow\left(1-\sqrt{5}\right)a^2=-2ax\)
\(\Leftrightarrow x=\frac{\sqrt{5}-1}{2}a\Rightarrow CN=\frac{3-\sqrt{5}}{2}a\)
\(\Rightarrow MN=\sqrt{CN^2+MC^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{4}a^2}\)
\(MN=\sqrt{\frac{15-6\sqrt{5}}{2}}a\)
P/s: Ko chắc