Giai hệ phương trình ;
\(^{\hept{\begin{cases}x^3-x^2+x+y-2=0\\y^3-y^2+y+2z-3=0\\z^3-z^2+z+3x-4=0\end{cases}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn có máy tính thì vào eqn rùi vào un.. j đó nhấn 2 rùi giải thui ak, mk mới lớp 6 nhưng mk bít cách giải hệ phương trình 2 ẩn rùi
đừng đùa nhau thế chứ bn iu < đúng vậy , người ta nói ko sai: rảnh rỗi sinh nông nỗi mà>
\(\hept{\begin{cases}mx-y=2m\left(1\right)\\4x-my=m+6\left(2\right)\end{cases}}\)
Từ (1) ta có: y=mx-2m, thay y vào (2) ta được
\(4x-m\left(mx-2m\right)=m+6\)
\(\Leftrightarrow\left(4-m^2\right)x=-2m^2+m+6\)
\(\Leftrightarrow\left(m^2-4\right)x=\left(2m+3\right)\left(m-2\right)\left(3\right)\)
Nếu \(m^2-4\ne\)0 hay m\(\ne\pm\)2 thì \(x=\frac{2m+3}{m+2}\)
Khi đó: \(y=mx-2m=\frac{2m^2+3m}{m+2}-2m=-\frac{m}{m+2}\)
Hệ có nghiệm duy nhất \(\left(\frac{2m+3}{m+2};\frac{-m}{m+2}\right)\)
Nếu m=2 thì (3) thỏa mãn với mọi x, và khi đó y=mx-2m=2x-4
Hệ vô số nghiệm \(\left(x;2x-4\right)\)với \(x\inℝ\)
Nếu m=-2 thì (3) trở thành 0x=4. Hệ vô nghiệm
bài này mình thấy chỉ cần thế này là xong
\(x^2+y^2=1\Leftrightarrow x+y=\sqrt{1}=1\)( có đúng ko nhỉ )
=>\(x+y=0+1=1+0\)
\(=>\left\{x,y\right\}\in\left(0,1\right);\left(1,0\right)\)
P/s : làm thử , e ms lớp 8 .
\(\hept{\begin{cases}x^2+y^2=1\\x^2-x=y^2-y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\x^2-y^2=x-y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\\left(x-y\right)\left(x+y\right)=x-y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\x+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\left(1\right)\\x=1-y\left(2\right)\end{cases}}\)
Thay ( 2 ) vào ( 1 ) ta có :
\(\left(1-y\right)^2=1-y^2\)
\(\Leftrightarrow1-2y+y^2=1-y^2\)
\(\Leftrightarrow1+y^2-1+y^2=2y\)
\(\Leftrightarrow2y^2=2y\)
\(\Leftrightarrow2y^2-2y=0\)
\(\Leftrightarrow2y\left(y-1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
T/h 1 : y = 0
=> x = 1 - 0 = 1
T/h 2 : y = 1
=> x = 1 - 1 = 0
Vậy ...................