K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2016

bạn vào trang này http://olm.vn/hoi-dap/question/86475.html

9 tháng 9 2016

Đây là bất đẳng thức cosi cho 4 số không âm mà

19 tháng 4 2016

Ta có: \(a^4+b^4\ge2a^2b^2\) , \(c^4+d^4\ge2c^2d^2\) (Rất dễ cm, bạn dùng biến đổi tương đương)

. => \(a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\) (1) Lại áp dụng BĐT trên, có:

\(a^2b^2+c^2d^2\ge2abcd=>2\left(a^2b^2+c^2d^2\right)\ge4abcd\)(2)

. Từ (1) và (2) suy ra đpcm. Dấu "=" xảy ra khi a=b=c=d

17 tháng 4 2016
[(a²)²-2a²b²+(b²)²] +[(c²)²-2c²d²+(d²)²] +2a²b² -4abcd +2c²d²≥ 0 (a²-b²)²+(c²-d²)² +2(ab-cd)² ≥0 (đpcm)
16 tháng 2 2019

Bài 1:

a) \(\)Ta có: x2 + y2 + z2 + 3 - 2(x + y + z) = (x2 - 2x + 1) + (y2 - 2y + 1) + (z2 - 2z + 1) = (x - 1)2 + (y - 1)2 + (z - 1)2 ≥ 0

=> x2 + y2 + z2 + 3 ≥ 2(x + y + z)

b) Áp dụng liên tiếp bất đẳng thức Cô-si:

\(\left(a^4+b^4\right)+\left(c^4+d^4\right)\ge2\sqrt{a^4b^4}+2\sqrt{c^4d^4}=2\left(a^2b^2+c^2d^2\right)\ge2.2.\sqrt{a^2b^2c^2d^2}=4\left|abcd\right|\ge4abcd\)

Dấu "=" xảy ra <=> a = b = c = d

Bài 2:

Ta sẽ chứng minh ab + bc + ca ≤ \(\dfrac{1}{3}\)(a + b + c)2 = 0

<=> 3ab + 3bc + 3ca ≤ (a + b + c)2

<=> 3ab + 3bc + 3ca ≤ a2 + b2 + c2 + 2ab + 2bc + 2ca

<=> ab + bc + ca ≤ a2 + b2 + c2

Thật vậy:

(a - b)2 + (b - c)2 + (c - a)2 ≥ 0

<=> a2 - 2ab + b2 + b2 - 2bc + c2 + c2 - 2ca + a2 ≥ 0

<=> 2a2 + 2b2 + 2c2 ≥ 2ab + 2bc + 2ca

<=> a2 + b2 + c2 ≥ ab + bc + ca

Dấu "=" xảy ra <=> a = b = c = 0

18 tháng 2 2019

@Nguyễn Thị Ngọc Thơ tưởng bữa trước bảo là tên cặn bã cơ mà =.='', giờ sv là sao -.-

Cơ mà bỏ cái thói like dạo rồi à ?

6 tháng 2 2020

Ta có BĐT cần chứng minh 

\(\Leftrightarrow a^6+b^6+ab\left(a^4+b^4\right)\ge a^6+b^6+a^2b^2\left(a^2+b^2\right)\)

\(\Leftrightarrow ab\left(a^4+b^4\right)\ge ab\left(a^3b+ab^3\right)\)

\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)

...

6 tháng 2 2020

Tớ vừa sửa đề rồi nha cậu :V

Cậu làm giùm tớ câu tớ vừa sửa nhé !! 

K áp dụng BĐT ạ

13 tháng 1 2018

Có : a^4;b^4;c^4;d^4 đều >= 0 nên ta áp dụng bđt cosi cho 4 số a^4;b^4;c^4;d^4 >= 0 thì :

a^4+b^4+c^4+d^4 >= 4\(\sqrt[4]{a^4.b^4.c^4.d^4}\) = 4abcd

Dấu "=" xảy ra <=> a=b=c=d

=> ĐPCM

Tk mk nha

13 tháng 1 2018

\(a^4+b^4+c^4+d^4\)

\(\ge2a^2b^2+2c^2d^2\ge2\left(2.ab.cd\right)=4abcd\)

Dấu = khi a=b=c=d

21 tháng 4 2018

Bổ sung ĐK : a , b , c , d dương

a4 + b4 + c4 + d4 ≥ 4abcd

Áp dụng BĐT Cô - si : x4 + y4 ≥ 2x2y2 ( x > 0 ; y > 0 )

Ta có : a4 + b4 ≥ 2a2b2 ( 1)

b4 + c4 ≥ 2b2c2 ( 2)

c4 + d4 ≥ 2c2d2 ( 3)

a4 + d4 ≥ 2a2d2 ( 4)

Từ ( 1; 2; 3; 4) ⇒ a4 + b4 + c4 + d4 ≥ a2b2 + b2c2 + c2d2 + a2d2 (***)

Lại Áp dụng BĐT Cô - si : x2 + y2 ≥ 2xy ( x > 0 ; y > 0 )

Ta có : a2b2 + c2d2 ≥ 2abcd ( *)

a2d2 + b2c2 ≥ 2abcd ( ** )

Từ : ( * ; ** ; ***) ⇒ đpcm

21 tháng 4 2018

đề bài lạ nhỉ đáng lẽ phải là \(a^4+b^4+c^4+d^4\ge4abcd\) chứ nhỉ

\(a^4+b^4+c^4+d^4\Rightarrow4\sqrt{4\left(a^4.b^4.c^4.d^4\right)}=4abcd\)

Dấu bằng xảy ra khi và chỉ khi \(a=b=c=d\)

Dùng cosi

8 tháng 2 2020

Ta có: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2\ge4abcd\)

b) \(a^2+1\ge2a,b^2+1\ge2b,c^2+1\ge2c\)

\(\Rightarrow\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge8abc\)

c) \(a^2+4\ge4a,b^2+4\ge4b,c^2+4\ge4c,d^2+4\ge4d\)

\(\Rightarrow\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge256abcd\)

8 tháng 2 2020

a) \(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)

b) \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a\cdot2b\cdot2c=8abc\)

c) \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a\cdot4b\cdot4c\cdot4d=256abcd\)

25 tháng 12 2018

Áp dụng BĐT AM-GM ta có:

\(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge2ab.2cd=4abcd\)                                

                                                         đpcm

???????????????????????????????????????????????

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng