tìm x1,y1 biết
2y1+3x1=20,x2=6,y2=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y tlt nên \(\dfrac{x_1}{y_1}=\dfrac{x_2}{y_2}\)
\(\Rightarrow\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}=\dfrac{x_1}{6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{18+6}=\dfrac{24}{24}=1\\ \Rightarrow\left\{{}\begin{matrix}x_1=6\\y_1=3\end{matrix}\right.\)
Ta có:
x và y là hai đại lượng tỉ lệ thuận
\(\Rightarrow\)\(\frac{x1}{y1}=\frac{x2}{y2}\)
\(\Rightarrow\)\(x1=x2.\frac{y1}{y2}=2.\left(\frac{-3}{4}\right):\frac{1}{7}=\frac{-21}{2}\)
x và y là hai đại lượng tỉ lệ thuận
\(\Rightarrow\frac{x1}{y1}=\frac{x2}{y2}\)
\(\Leftrightarrow\frac{x1}{x2}=\frac{y1}{y2}=\frac{\left(y1-x1\right)}{\left(y2-x2\right)}\)( tính chất dãy tỉ số bằng nhau )
Thay số ta có:
\(\frac{x1}{\left(-4\right)}=\frac{y1}{3}=\frac{-2}{\left(3-\left(-4\right)\right)}\)
\(\Leftrightarrow\frac{x1}{\left(-4\right)}=\frac{y1}{3}=\frac{-2}{7}\)
\(\Rightarrow x1=\left(-4\right).\left(\frac{-2}{7}\right)=\frac{8}{7}\)
\(y1=3.\left(\frac{-2}{7}\right)=\frac{-6}{7}\)
a: x tỉ lệ nghịch với y
nên \(x_1\cdot y_1=x_2\cdot y_2\)
=>\(\dfrac{x_2}{x_1}=\dfrac{y_1}{y_2}\)
hay \(\dfrac{x_2}{6}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_2}{6}=\dfrac{y_1}{3}=\dfrac{5x_2-4y_1}{5\cdot6-4\cdot3}=\dfrac{9}{30-12}=\dfrac{9}{18}=\dfrac{1}{2}\)
=>x2=3; y1=3/2
b:
x tỉ lệ nghịch với y
nên \(x_1\cdot y_1=x_2\cdot y_2\)
=>\(\dfrac{x_2}{x_1}=\dfrac{y_1}{y_2}\)
hay \(\dfrac{x_1}{x_2}=\dfrac{y_2}{y_1}\)
=>\(\dfrac{x_1}{-2}=\dfrac{y_2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-2}=\dfrac{y_2}{5}=\dfrac{3x_1+7y_2}{3\cdot\left(-2\right)+7\cdot5}=\dfrac{10}{29}\)
=>x1=-20/29; y2=50/29
c: x tỉ lệ nghịch với y
nên x1/x2=y2/y1
=>x1/3=y2/7=10/10=1
=>x1=3; y2=7
Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow x_1=\dfrac{y_1}{y_2}\cdot x_2=\left(-\dfrac{3}{4}\right):\dfrac{1}{7}\cdot2=\dfrac{-3}{4}\cdot7\cdot2=-\dfrac{3}{4}\cdot14=-\dfrac{42}{4}=-\dfrac{21}{2}\)
b: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-4}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-4}=\dfrac{y_1}{3}=\dfrac{y_1-x_1}{3-\left(-4\right)}=\dfrac{2}{7}\)
Do đó: \(x_1=-\dfrac{8}{7};y_1=\dfrac{6}{7}\)
c: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-6}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{3\cdot\left(-6\right)+2\cdot3}=\dfrac{20}{-12}=-\dfrac{5}{3}\)
Do đó: \(x_1=10;y_1=-5\)
1: Vì x và y tỉ lệ thuận nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
hay \(x_2=\dfrac{x_1\cdot y_2}{y_1}=\left(\dfrac{11}{7}\cdot\dfrac{-7}{3}\right):\dfrac{11}{2}=\dfrac{-11}{3}\cdot\dfrac{2}{11}=\dfrac{-2}{3}\)
2: Ta có: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-6}=\dfrac{y_1}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-6}=\dfrac{y_1}{3}=\dfrac{3x_1+2y_1}{3\cdot\left(-6\right)+2\cdot3}=\dfrac{20}{-12}=\dfrac{-5}{3}\)
Do đó: \(x_1=10;y_2=-5\)