K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2016

Ta có:

    A:3=c=>A=3c

    B:5=c=>B=5c

       A+B=364,8

=>3c+5c=364,8

          8c=364,8

           c=45,6

  • A=3c=45,6.3=136,8
  • B=5c=45,6.5=228
8 tháng 9 2016

theo bài ( A+B) gấp 8 lần C nên ta có tổng số phần là A+B+C=3+5+1=9

A=365,8:11 .3

B VÀ C LÀM TƯƠNG TỰ A

28 tháng 10 2016

Số tự nhiên chia hết cho 2 thì có tận cùng là 0 2 4 6 8 

Số tự nhiên chia hết cho 2 và 5 là  tận cung là 0

số tự nhiên nằm trong 2 tập hợp là 0

5 tháng 11 2017

ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.

Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

Số phần tử của tập B là: 7+6+5+4+3+2+1=7*8/2=28 phân số

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

Do đó: ΔOAC=ΔOBC

Suy ra: CA=CB

b: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có

CA=CB

\(\widehat{ACD}=\widehat{BCE}\)

Do đó:ΔCAD=ΔCBE

Suy ra: CD=CE

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có 

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

Do đó: ΔOAC=ΔOBC

Suy ra: OA=OB và CA=CB

=>ΔOAB cân tại O

b: Ta có: OA=OB

CA=CB

DO đó: OC là đường trung trực của AB

hay OC\(\perp\)AB

c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có

CA=CB

\(\widehat{ACD}=\widehat{BCE}\)

Do đó: ΔCAD=ΔCBE

SUy ra: CD=CE

a: Ta có: ΔOED cân tại O

mà OI là đường trung tuyến

nên OI\(\perp\)ED

Ta có: \(\widehat{OIC}=\widehat{OAC}=\widehat{OBC}=90^0\)

=>O,I,C,A,B cùng thuộc đường tròn đường kính OC

b: Xét (O) có

CA,CB là các tiếp tuyến

Do đó: CA=CB

=>C nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1),(2) suy ra OC là đường trung trực của AB

=>OC\(\perp\)AB tại H và H là trung điểm của AB

Xét ΔOAC vuông tại A có AH là đường cao

nên \(AH^2=OH\cdot HC\)

=>\(OH\cdot HC=AH^2=\left(\dfrac{1}{2}AB\right)^2=\dfrac{1}{4}AB^2\)

Xét (O) có

\(\widehat{CAD}\) là góc tạo bởi tiếp tuyến AC và dây cung AD

\(\widehat{AED}\) là góc nội tiếp chắn cung AD

Do đó: \(\widehat{CAD}=\widehat{AED}\)

=>\(\widehat{CAD}=\widehat{CEA}\)

Xét ΔCAD và ΔCEA có

\(\widehat{CAD}=\widehat{CEA}\)

\(\widehat{ACD}\) chung

Do đó: ΔCAD~ΔCEA

=>\(\dfrac{CA}{CE}=\dfrac{CD}{CA}\)

=>\(CD\cdot CE=CA^2\)

\(CI^2-DI^2=\left(CI-DI\right)\cdot\left(CI+DI\right)\)

\(=CD\cdot CE=CA^2\left(3\right)\)

Xét ΔOAC vuông tại A có AH là đường cao

nên \(CH\cdot CO=CA^2\left(4\right)\)

Từ (3) và (4) suy ra \(CI^2-DI^2=CH\cdot CO\)

c: Ta có: CD*CE=CH*CO

=>\(\dfrac{CD}{CO}=\dfrac{CH}{CE}\)

Xét ΔCDH và ΔCOE có

\(\dfrac{CD}{CO}=\dfrac{CH}{CE}\)

\(\widehat{DCH}\) chung

Do đó: ΔCDH~ΔCOE

=>\(\widehat{CDH}=\widehat{COE}\)

mà \(\widehat{CDH}+\widehat{EDH}=180^0\)(hai góc kề bù)

nên \(\widehat{EDH}+\widehat{EOH}=180^0\)

=>EDHO là tứ giác nội tiếp

=>ĐƯờng tròn ngoại tiếp ΔDEH luôn đi qua O cố định

a: Xét ΔOAC vuông tại A và ΔOBC vuông tại B có

OC chung

\(\widehat{AOC}=\widehat{BOC}\)

Do đó;ΔOAC=ΔOBC

Suy ra: OA=OB và CA=CB

hay ΔOAB cân tại O

b: Ta có: ΔOAB cân tại O

mà OC là đường phân giác

nên CO là đường cao

c: Xét ΔCAD vuông tại A và ΔCBE vuông tại B có 

CA=CB

\(\widehat{ACD}=\widehat{BCE}\)

Do đó: ΔCAD=ΔCBE

Suy ra: CD=CE

d: OA=12cm

OC=13cm

=>AC=5cm