Giải và biện luận phương trình sau:
\(2x-5x\sqrt{x-a}+2a^2-2a\) =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta =1^2-4.1.m=1-4m\)
Pt có nghiệm kép
\(\to \Delta=0\\\to 1-4m=0\\\leftrightarrow m=\dfrac{1}{4}\)
Pt có 2 nghiệm phân biệt
\(\to \Delta>0\\\to 1-4m>0\\\leftrightarrow m<\dfrac{1}{4}\)
Pt vô nghiệm
\(\to \Delta<0\\\to 1-4m<0\\\leftrightarrow m>\dfrac{1}{4}\)
\(2x-5a\sqrt{x-a}+2a\left(a-1\right)=0\)
Đặt \(\sqrt{x-a}=b\ge0\)
\(\Rightarrow2b^2-5ab+2a^2=0\)
\(\Leftrightarrow\left(b-2a\right)\left(2b-a\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\b=2a\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\sqrt{x-a}\\\sqrt{x-a}=2a\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{a^2}{4}+a\\x=4a^2+a\end{matrix}\right.\)
Ta có : \(\hept{\begin{cases}\left(m+5\right)x+3y=1\\mx+2y=-4\end{cases}\Leftrightarrow\hept{\begin{cases}\left(2m+10\right)x+6x=2\\3mx+6x=-12\end{cases}}}\)
Trừ vế 1 cho vế 2 phương trình,Ta được:
(10 - m )x = 14 (*)
TH1 : 10 - m \(\ne\)0 \(\Leftrightarrow\) m \(\ne\) 10
Ta có : (*) \(\Leftrightarrow\) \(x=\frac{14}{10-m}\)
Ta tìm được : \(y=\frac{5m+20}{m-10}\)
Hệ có nghiệm duy nhất: \(\left(x;y\right)=\left(\frac{14}{10-m};\frac{5m+20}{m-10}\right)\)
TH2 : 10 - m = 0 \(\Leftrightarrow\) m = 10
Phương trình (*) vô nghiệm \(\Leftrightarrow\) Hệ vô nghiệm
Đáp số: +m\(\ne\)0 . Hệ có nghiệm duy nhất :
\(\left(x;y\right)=\left(\frac{14}{10-m};\frac{5m+20}{m-10}\right)\)
+ m = 0 (Hệ vô nghiệm )
|x-9|=2x+5
Xét 3 TH
TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)
TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)
TH3: x=9 =>0=23(L)
Vậy x= 4/3
Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)
\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)
\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)
Gợi ý
ĐKXĐ: ....
Do x=0 không phải là nghiệm nên chia cả hai vế cho x^2 có
\(\sqrt{2+\frac{5}{x}+\frac{3}{x^2}}=4-\frac{5}{x}-\frac{3}{x^2}\)(1) Đặt \(\sqrt{\frac{5}{x}+\frac{3}{x^2}+2}=y\Rightarrow y\ge0\)và \(\frac{5}{x}+\frac{3}{x^2}=y^2-2\)
Khi đó \(\left(1\right)\Leftrightarrow y=4-y^2+2\)Sau khi tìm được y thì thế vào tìm x , rồi đối chiếu ĐKXĐ và trả lời
KL : ...
\(\sqrt{2x+5}+3-1-\sqrt{3-x}=\left(x-2\right)\left(x-3\right)\)
\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x+5}-3}-\frac{2-x}{1-\sqrt{3-x}}-\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x+5}-3}+\frac{1}{1-\sqrt{3-x}}-x+3\right)=0\)
Giải nốt vs ạ
5x\(\sqrt{x-a}\)=2a-2a\(^2\)-2x
<=> \(\sqrt{x-a}\)=\(\frac{2a-2a^2-2x}{5x}\)
+ Với \(\frac{2a-2a^2-2x}{5x}\)=0 <=> 2a - 2a\(^2\)-2x = 0 <=> a\(^2\)-a+x=0 <=> a + \(\frac{1}{2}\)=\(\sqrt{\frac{1}{4}-x}\)
<=> a = \(\sqrt{\frac{1}{4}-x}\)- \(-\frac{1}{2}\)=....... tự giải
xét trường hợp \(\frac{2a-2a^2-2x}{5x}\)\(\ne\)0 rồi tự giải tiếp