K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{2012^2}-1\right)\)(có 1006 số hạng nên tích của A là số dương)

\(\Rightarrow A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012^2}\right)\)

\(\Rightarrow A=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{2012^2-1}{2012^2}\right)\)

\(\Rightarrow A=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{2011\cdot2013}{2012^2}\)

\(\Rightarrow A=\text{​​}\frac{2013}{2\cdot2012}=\frac{2013}{4024}\)

29 tháng 8 2017

\(\left\{{}\begin{matrix}a^2_2=a_1a_3\\a^2_3=a_2a_4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\\\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_1a_2a_3}{a_2a_3a_4}=\dfrac{a_1}{a_4}\)

Ta có:

\(\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=\dfrac{a_1^3}{a_2^3}\\\dfrac{a_2}{a_3}=\dfrac{a_2^3}{a_3^3}\\\dfrac{a_3}{a_4}=\dfrac{a_3^3}{a_4^3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a^3_3}{a_4^3}=\dfrac{a^3_1+a_2^3+a_3^3}{a^3_2+a^3_3+a^3_4}\)

Vậy \(\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}=\dfrac{a_1}{a_4}\)

17 tháng 4 2022

A.\(\dfrac{a\sqrt{6}}{3}\)

NV
17 tháng 4 2022

\(S_{\Delta ACD}=\dfrac{1}{2}AC.AD.sin\widehat{CAD}=\dfrac{a^2\sqrt{3}}{4}\)

\(V=\dfrac{AB.AC.AD}{6}.\sqrt{1+2cos90^0.cos60^0.cos120^0-cos^290^0-cos^260^0-cos^2120^0}=\dfrac{a^3\sqrt{2}}{12}\)

\(\Rightarrow d\left(B;\left(ACD\right)\right)=\dfrac{3V}{S}=\dfrac{a\sqrt{6}}{3}\)

21 tháng 6 2019

a, \(3^4\div3^2-\left[120-\left(2^6.2+5^2.2\right)\right]\)

\(=3^2-\left\{120-\text{[}2.\left(2^6+5^2\right)\text{]}\right\}\)

\(=3^2-\left(120-2\cdot89\right)\)

\(=9--58=9+58=67\)

21 tháng 6 2019

1. \(a,3^4:3^2-\left[120-(2^6\cdot2+5^2\cdot2)\right]\)

\(=3^2-\left[120-\left\{(2^6+5^2)\cdot2\right\}\right]\)

\(=3^2-\left[120-\left\{(64+25)\cdot2\right\}\right]\)

\(=9-\left[120-89\cdot2\right]\)

\(=9-\left[120-178\right]=9-(-58)=67\)

b, Tương tự như bài a

2.a,\(4^x\cdot5+4^2\cdot2=2^3\cdot7+56\)

\(\Leftrightarrow4^x\cdot5+16\cdot2=8\cdot7+56\)

\(\Leftrightarrow4^x\cdot5+32=56+56\)

\(\Leftrightarrow4^x\cdot5+32=112\)

\(\Leftrightarrow4^x\cdot5=80\)

\(\Leftrightarrow4^x=16\Leftrightarrow4^x=4^2\Leftrightarrow x=2\)

\(b,24:(2x-1)^3-2=1\)

\(\Leftrightarrow24:(2x-1)^3=3\)

\(\Leftrightarrow(2x-1)^3=8\)

\(\Leftrightarrow(2x-1)^3=2^3\)

\(\Leftrightarrow2x-1=2\)

Làm nốt là xong thôi

24 tháng 3 2017

Giải:

Ta có: \(a_2^2=a_1a_3\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\)

\(a_3^2=a_2a_4\Rightarrow\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}=\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)

\(\dfrac{a_1^3}{a_2^3}=\left(\dfrac{a_1}{a_2}\right)^3=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\)

\(\Rightarrow\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\dfrac{a_1}{a_4}\left(đpcm\right)\)

Vậy...

24 tháng 3 2017

Theo bài ra:

\(a_1,a_2,a_3,a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}a_2^2=a_1a_3\\a_3^2=a_2a_4\end{matrix}\right.\)

Ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)

\(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a_2^3}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a^3_1}{a^3_2}=\dfrac{a_2^3}{a^3_3}=\dfrac{a^3_3}{a^3_4}=\dfrac{a^3_1+a_2^3+a_3^3}{a_2^3+a_3^3+a^3_4}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra:

\(\dfrac{a^3_1+a_2^3+a_3^3}{a_2^3+a_3^3+a^3_4}=\dfrac{a_1}{a_4}\) (Đpcm)