Tìm x,y,z,biết:
x+y=1/2
y+z=1/3
z+x=1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\Rightarrow\frac{2x}{4}=\frac{2y}{3}=\frac{3z}{4}=\frac{2\left(x+y+x\right)+z}{4+3+4}=\frac{2.145+z}{11}\)
\(\Rightarrow\frac{3z}{4}=\frac{290+z}{11}\Rightarrow z=10\)
Từ đó tìm ra x,y thông qua biểu thức \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=\frac{3.10}{4}=\frac{15}{2}\)
Theo bài ra ta cs
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\)và \(x+y+z=145\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30\)
\(\hept{\begin{cases}\frac{x}{2}=30\\\frac{y}{\frac{3}{2}}=30\\\frac{z}{\frac{4}{3}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=60\\y=45\\z=40\end{cases}}}\)
Ta có: \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}.\)
\(\Rightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}\) và \(x+y+z=145.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=\frac{x+y+z}{2+\frac{3}{2}+\frac{4}{3}}=\frac{145}{\frac{29}{6}}=30.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=30\Rightarrow x=30.2=60\\\frac{y}{\frac{3}{2}}=30\Rightarrow y=30.\frac{3}{2}=45\\\frac{z}{\frac{4}{3}}=30\Rightarrow z=30.\frac{4}{3}=40\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(60;45;40\right).\)
Chúc bạn học tốt!
Ta có: \(\hept{\begin{cases}|x+2y-z|\ge0;\forall x,y,z\\\left(x-y+3z\right)^2\ge0;\forall x,y,z\\\left(z-1\right)^4\ge0;\forall x,y,z\end{cases}}\)\(\Rightarrow|x+2y-z|+\left(x-y+3z\right)^2+\left(z-1\right)^4\ge0;\forall x,y,z\)
Do đó \(|x+2y-z|+\left(x-y+3z\right)^2+\left(z-1\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}|x+2y-z|=0\\\left(x-y+3z\right)^2=0\\\left(z-1\right)^4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2y-z=0\\x-y+3z=0\\z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2y=1\\x-y=-3\\z=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-5}{3}\\y=\frac{4}{3}\\z=1\end{cases}}\)
Vậy ...
đặt x − 1 2 = y − 2 3 = z − 3 4 = k 2 x−1 = 3 y−2 = 4 z−3 =k(k ∈ ∈Z) =>x-1=2k=>x=2k+1 y-2=3k=>y=3k+2 z-3=4k=>z=4k+3 thay x=2k+1;y=3k+2;z=4k+3 vào x-2y+3z=-10 ta được : 2k+1-2(3k+2)+3(4k+3)=-10 2k+1-6k-4+12k+9=-10 8k+6=-10 8k=-10-6 8k=-16 k=-2 =>x=2k+1=2.(-2)+1=-4+1=-3 =>y=3k+2=3.(-2)+2=-6+2=-4 =>z=4k+3=4.(-2)+3=-8+3=-5 vậy x=-3;y=-4;z=-5