K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2021

Ptdt đi qua M có dạng: \(y=y_0+k\left(x-x_0\right)\Leftrightarrow y=2+k\left(x-1\right)=kx-k+2\)

Vi dt do tiep xuc voi do thi

\(\Rightarrow\left\{{}\begin{matrix}x^3-2x^2+\left(m-1\right)x+2m=kx-k+2\left(1\right)\\3x^2-4x+m-1=k\left(2\right)\end{matrix}\right.\)

The (2) vo (1)

\(x^3-2x^2+\left(m-1\right)x+2m=\left(3x^2-4x+m-1\right)x-3x^2+4x-m+1+2\)

\(\Leftrightarrow2x^3-5x^2+4x+3=3m\) (3)

Xet \(f\left(x\right)=2x^3-5x^2+4x+3\Rightarrow f'\left(x\right)=6x^2-10x+4\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=1\end{matrix}\right.\)

x -vc 2/3 1 +vc f'(x) f(x) + - + 0 0 -vc 109/27 4 +vc 3m 3m

Nhìn vô bbt, để (3) có 2 nghiệm pb (do có 2 tiếp tuyến) thì đường thẳng y=3m phải cắt đt tại 2 điểm\(\Rightarrow\left[{}\begin{matrix}3m=\dfrac{109}{27}\\3m=4\end{matrix}\right.\Rightarrow...\)

a: y=m^2x-4mx+8m+4x+3

=x(m^2-4m+4)+8m+3

Để đây là hàm số bậc nhất thì m^2-4m+4<>0

=>(m-2)^2<>0

=>m-2<>0

=>m<>2

b: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}2018-2m>=0\\\sqrt{2018-2m}< >0\end{matrix}\right.\Leftrightarrow2018-2m>0\)

=>2m<2018

=>m<1009

27 tháng 4 2016

Ta có \(\overrightarrow{n}=\left(2;1\right)\) là vecto pháp tuyến của đường thẳng d

\(y'=3x^2-2\left(m+2\right)x+m-1\Rightarrow y'\left(1\right)=3-2m-4+m-1=-m-2\)

Gọi \(\Delta\) là tiếp tuyến của đồ thị hàm số (1) tại điểm có hoành độ bằng 1. Suy ra phương trình của  \(\Delta\) có dạng \(y=y'\left(1\right)\left(x-1\right)+y\left(1\right)\)

Do đó \(\overrightarrow{n}=\left(m+2;1\right)\) là vecto pháp tuyến của  \(\Delta\)

Theo đề bài ta có : \(\left|\cos\left(\overrightarrow{n_1.}\overrightarrow{n_2}\right)\right|=\cos30^0\Rightarrow\frac{\left|\overrightarrow{n_1.}\overrightarrow{n_2}\right|}{\left|\overrightarrow{n_1}\right|\left|\overrightarrow{n_2}\right|}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow\frac{\left|2\left(m+2\right)+1\right|}{\sqrt{5}\sqrt{\left(m+2\right)^2+1}}=\frac{\sqrt{3}}{2}\)

                         \(\Leftrightarrow m^2+20m+25=0\)

                         \(\Leftrightarrow m=-10\pm5\sqrt{3}\)

 
 
29 tháng 1 2022

\(1.x^2+\dfrac{1}{x^2}-2m\left(x+\dfrac{1}{x}\right)+1+2m=0\left(1\right)\)\(đặt:x^2+\dfrac{1}{x^2}=t\)

\(x>0\Rightarrow t\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)

\(x< 0\Rightarrow-t=-x^2+\dfrac{1}{\left(-x^2\right)}\ge2\Rightarrow t\le-2\)

\(\Rightarrow t\in(-\infty;-2]\cup[2;+\infty)\left(2\right)\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-2mt+2m-1=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2m+1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=1\notin\left(2\right)\\t=2m-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2m-1\le-2\\2m-1\ge2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{3}{4}\end{matrix}\right.\)

\(2.\)  \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\left(1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)=-1\\f\left(\left|x\right|\right)=3-m\end{matrix}\right.\)

\(dựa\) \(vào\) \(đồ\) \(thị\) \(f\left(\left|x\right|\right)\) \(\Rightarrow f\left(\left|x\right|\right)=-1\) \(có\) \(2nghiem\) \(pb\)

\(\left(1\right)có\) \(6\) \(ngo\) \(pb\Leftrightarrow\left\{{}\begin{matrix}-1< 3-m< 3\\3-m\ne-1\\\end{matrix}\right.\)\(\Leftrightarrow0< m< 4\)

\(\Rightarrow m=\left\{1;2;3\right\}\)

 

 

NV
17 tháng 7 2021

\(y'=3x^2-2\left(m+1\right)x-\left(2m^2-3m+2\right)\)

\(\Delta'=\left(m+1\right)^2+3\left(2m^2-3m+2\right)=7\left(m^2+m+1\right)>0\) ; \(\forall m\)

\(\Rightarrow y'=0\) luôn có 2 nghiệm phân biệt

Bài toán thỏa mãn khi: \(x_1< x_2\le2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-\left(2m^2-3m+2\right)}{3}-\dfrac{4\left(m+1\right)}{3}+4\ge0\\\dfrac{2\left(m+1\right)}{3}< 4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2m^2-m+6\ge0\\m< 5\end{matrix}\right.\) \(\Leftrightarrow-2\le m\le\dfrac{3}{2}\)

18 tháng 7 2021

giải thích cho em chỗ x1,x2 được không ạ?

 

HQ
Hà Quang Minh
Giáo viên
17 tháng 8 2023

a, Để hàm số là hàm bậc nhất thì \(\left(-m^2+m-2\right)\ne0\)

\(\Rightarrow-\left(m-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\ne0\) (luôn đúng vì \(-\left(m-\dfrac{1}{2}\right)^2\le0\forall m\))

Vậy hàm số luôn là hàm bậc nhất.

 

b,Để hàm số là hàm bậc nhất thì \(\left\{{}\begin{matrix}2m^2-6m=0\\2m+3\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=0\\m=3\\m\ne-\dfrac{3}{2}\end{matrix}\right.\left(tm\right)\)

Vậy hàm số là hàm bậc nhất khi m ∈ {0;3}.

Bài 1: 

a) Để hàm số y=(k-2)x+k+3 là hàm số bậc nhất thì \(k\ne2\)

b) Để hàm số y=(k-2)x+k+3 đồng biến trên R thì k-2>0

hay k>2

Bài 2: 

Thay \(x=-\dfrac{1}{2}\) và \(y=\dfrac{2}{3}\) vào (D), ta được:

\(\left(2m-3\right)\cdot\dfrac{-1}{2}-\dfrac{1}{2}=\dfrac{2}{3}\)

\(\Leftrightarrow\left(2m-3\right)\cdot\dfrac{-1}{2}=\dfrac{2}{3}+\dfrac{1}{2}=\dfrac{7}{6}\)

\(\Leftrightarrow2m-3=\dfrac{7}{6}:\dfrac{-1}{2}=\dfrac{-7}{6}\cdot\dfrac{2}{1}=-\dfrac{14}{6}=-\dfrac{7}{3}\)

\(\Leftrightarrow2m=\dfrac{-7}{3}+3=\dfrac{-7}{3}+\dfrac{9}{3}=\dfrac{2}{3}\)

hay \(m=\dfrac{1}{3}\)

25 tháng 12 2021

Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4

=>m=-2

AH
Akai Haruma
Giáo viên
17 tháng 9 2021

Lời giải:

a. Với $m=1$ thì ptđt $(d)$ là: $y=x+1$

b. Trung điểm của 2 đường thẳng??? Đường thẳng thì làm gì có trung điểm hả bạn? Đoạn thẳng thì có.

c. $(d)$ cắt $y=x-2$ tại điểm có hoành độ $-1$

$\Leftrightarrow$ PT hoành độ giao điểm $(2-m)x+2m-1-(x-2)=0$ nhận $x=-1$ là nghiệm 

$\Leftrightarrow (2-m)(-1)+2m-1-(-1-2)=0$
$\Leftrightarrow m=0$