tìm các số nguyên tố x y sao cho x^2+117=(2y + 1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có ; -nếu y2 là số chẵn mà y là số nguyên tố =>y=2
=>x2 +117 =22 =4( vô lý)
=>y2 là số lẻ mà 117 là số lẻ =>x2 là số nguyên tố chẵn => x=2
thay vào ta có :
22 +117 =y2 =>121 = y2 =>112 =y2 =>y=11
vậy x=2 ; y=11
Mình thì có cách này, không biết có đúng không nữa:
Giải: Ta có các số nguyên tố như sau: 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; ...
Theo đề, ta thay lần lượt các số nguyên tố vào x và y :
- Nếu x bằng 2 thì 22 + 117 = 121. Mà 121 = \(11^2\) (chọn)
- Nếu x bằng 3 thì 32 + 117 = 126 Mà 126 = 2.\(3^2\).7 (loại) => Nếu ta thay các số khác vào x và y sẽ không bằng \(x^2\) và \(y^2\)
Vậy: Hai số nguyên tố x,y là 2 và 11.
Đúng thì chọn mình nhé! Tốt nhất là bạn hãy thử lại nữa đấy!
Mình thì có cách này, không biết có đúng không nữa:
Giải: Ta có các số nguyên tố như sau: 2 ; 3 ; 5 ; 7 ; 11 ; 13 ; 17 ; 19 ; ...
Theo đề, ta thay lần lượt các số nguyên tố vào x và y :
- Nếu x bằng 2 thì 22 + 117 = 121. Mà 121 = \(11^2\) (chọn)
- Nếu x bằng 3 thì 32 + 117 = 126. Mà 126 = 2.32.7 (loại) => Nếu ta thay các số khác vào x và y sẽ không bằng \(x^2\) và \(y^2\).
Vậy: Hai số nguyên tố x,y là 2 và 11.
x2 + 117 = y2
Dễ thấy: y2 > 117
=> y > 10
Do y nguyên tố nên y lẻ => y2 lẻ
Mà x2 + 117 = y2 nên x2 chẵn => x chẵn
Mà x nguyên tố nên x = 2
Thay vào đề bài ta có: 22 + 117 = y2
=> 121 = y2 = 112
=> y = 11 (thỏa mãn)
Vậy x = 2; y = 11
x2 + 117 = y2
Dễ thấy: y2 > 117
=> y > 10
Do y nguyên tố nên y lẻ => y2 lẻ
Mà x2 + 117 = y2 nên x2 chẵn => x chẵn
Mà x nguyên tố nên x = 2
Thay vào đề bài ta có: 22 + 117 = y2
=> 121 = y2 = 112
=> y = 11 (thỏa mãn)
Vậy x = 2; y = 11
Lời giải:
$x^2=2y^2+1$ là số lẻ nên $x$ là số lẻ.
$x^2=2y^2+1$
$\Rightarrow x^2-1=2y^2$
$\Rightarrow (x-1)(x+1)=2y^2$
Vì $x$ lẻ nên $x-1, x+1$ đều chẵn
$\Rightarrow (x-1)(x+1)\vdots 4$
$\Rightarrow 2y^2\vdots 4\Rightarrow y^2\vdots 2\Rightarrow y$ chẵn.
Mà $y$ là stn nên $y=2$.
Khi đó: $x^2-1=2y^2=2.2^2=8$
$x^2=8+1=9\Rightarrow x=3$
Vậy $(x,y)=(3,2)$
Do \(\left(2y+1\right)^2\) luôn lẻ
\(\Rightarrow x^2+117\) lẻ
\(\Rightarrow x^2\) chẵn
\(\Rightarrow x\) chẵn
Mà x là số nguyên tố \(\Rightarrow x=2\)
Thế vào pt ban đầu:
\(\left(2y+1\right)^2=117+2^2=121\)
\(\Rightarrow2y+1=11\)
\(\Rightarrow y=5\) là SNT (tm)
Vậy \(\left(x;y\right)=\left(2;5\right)\)