cho tam giác ABC có AC=2AB. Đường phân giác AD. Chứng minh rằng DC=2AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Xét tam giác ABC có
AD là tia phân giác
=> \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(tính chất tia phân giác)
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{1}{2}\Rightarrow DC=2DB\)

A B E D C K
Ta có
\(AC=2AB\Rightarrow AB=\dfrac{AC}{2}\)
Gọi K là trung điểm AC
\(\Rightarrow AK=CK=\dfrac{AC}{2}\)
\(\Rightarrow AB=AK\) => tg ABK cân tại A
Ta có
\(\widehat{BAD}=\widehat{CAD}\) (gt)
\(\Rightarrow AD\perp BK\) (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường cao) (1)
Xét tg ACE có
AK=CK; BE=BC (gt) => BK là đường trung bình của tg ACE
=> BK//AE (2)
Từ (1) và (2) => \(AD\perp AE\Rightarrow\widehat{DAE}=90^o\) (Hai đường thẳng // nếu đường thẳng thứ 3 vuông góc với 1 trong 2 đường thẳng cho trước thì vuông góc với đường thẳng còn lại)

Áp dụng tính chất đường phân giác trong tam giác ABC
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)
MÀ DC=2BD
\(\frac{\Rightarrow AB}{AC}=\frac{BD}{2BD}=\frac{1}{2}\Rightarrow AC=2AB\)
Chúc bạn học tốt
__________ T I C K nha __________

1:
AB=1/2AC=AM=MC
=>AB=2AE=2EM=MC
Xet ΔABC và ΔAEB có
AB/AE=AC/AB=2
góc A chung
=>ΔABC đồng dạng với ΔAEB
2: AM=AB
=>ΔAMB cân tại A
mà AG là phân giác
nên AG vuông góc BM và AG là đường trung tuyến ứng với cạnh MB
Xét ΔBAM có
BE,AG là trung tuyến
=>G là trọng tâm
3: CM/ME=2
CD/DB=2
=>CM/ME=CD/DB
=>MD//BG
=>MD/BE=CM/CE=2/3
=>MD=2/3BE=BG
=>BDMG làhình bình hành
mà GB=GM(G là trọng tâm của ΔAMB cân tại A)
nên BDMG là hình thoi

tam giác ABC có AD là tia phan giác góc A
\(\Rightarrow\frac{AC}{AB}=\frac{DC}{DB}\)
MA \(DC=2DB\)
\(\Rightarrow\frac{AC}{AB}=\frac{2DB}{DB}=\frac{2}{1}\)
\(\Rightarrow AC=2AB\)
NẾU CÓ SAI BN THÔNG CẢM NHA
A B C D
Vì AD là đường phân giác nên \(\frac{AB}{AC}=\frac{BD}{CD}\)(tính chất đường phân giác)
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{CD}=\frac{BD}{2BD}=\frac{1}{2}\)
\(\Rightarrow AC=2AB\left(đpcm\right)\)
Troll v