(x-\(\frac{3}{4}\)).(x+\(\frac{1}{2}\)) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(F=\frac{3}{2}\cdot x^4-\frac{1}{16}\cdot x^4+\frac{1}{32}\cdot x^4-\frac{1}{4}\cdot x^4\)
\(=x^4\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)\)
\(=\frac{32}{39}\cdot x^4\)
Vì \(x\ne0\Rightarrow x^4>0\)
=> \(\frac{32}{39}x^4>0\forall x\ne0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình áp dụng luôn Cô - si cho các số ta được
a) \(\frac{x}{2}+\frac{18}{x}\ge2\sqrt{\frac{x}{2}\cdot\frac{18}{x}}=2.\sqrt{9}=2.3=6\)
b) \(y=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
c) \(\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2}\cdot\frac{1}{x+1}}-\frac{3}{2}=2\sqrt{\frac{3}{2}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
h) \(x^2+\frac{2}{x^2}\ge2\sqrt{x^2\cdot\frac{2}{x^2}}=2\sqrt{2}\)
g) \(\frac{x^2+4x+4}{x}=\frac{\left(x+2\right)^2}{x}\ge0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Tìm x:
a) \(\frac{11}{12}-\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{5}{12}.\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{5}+x=\frac{1}{4}:\frac{5}{12}=\frac{3}{5}\)
\(\Leftrightarrow x=\frac{3}{5}-\frac{2}{5}=\frac{1}{5}\)
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=-\frac{7}{20}\)
\(\Leftrightarrow x=-\frac{7}{20}:\frac{1}{4}=\frac{-7}{5}\)
a) \(\frac{11}{12}-\frac{5}{12}\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{5}{12}.\frac{2}{5}-\frac{5}{12}x=\frac{2}{3}\)
\(\Leftrightarrow\frac{11}{12}-\frac{1}{6}-\frac{5}{12}x=\frac{2}{3}\)
\(\Leftrightarrow\frac{-5}{12}x=\frac{2}{3}-\frac{11}{12}+\frac{1}{6}\)
\(\Leftrightarrow-\frac{5}{12}x=\frac{8}{12}-\frac{11}{12}+\frac{2}{12}=-\frac{1}{12}\)
\(\Leftrightarrow x=\frac{-1}{12}:\left(-\frac{5}{12}\right)=-\frac{1}{12}.\left(-\frac{12}{5}\right)=\frac{1}{5}\)
Vậy x = 1/5
b) \(\frac{3}{4}+\frac{1}{4}:x=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{4}:x=\frac{2}{5}-\frac{3}{4}=\frac{8}{20}-\frac{15}{20}=-\frac{7}{20}\)
\(\Leftrightarrow x=\frac{1}{4}:\left(-\frac{7}{20}\right)=\frac{1}{4}.\left(-\frac{20}{7}\right)=-\frac{5}{7}\)
Vậy x = -5/7
c) \(2x\left(x-\frac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\frac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{7}\end{matrix}\right.\)
d) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\end{matrix}\right.\)
Ta thấy x <-1 và x >2 vô lí
Do đó: x >-1 và x <2
Vậy -1 < x <2
e) \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{2}{3}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{2}{3}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
Vậy x > 2 hoặc x < -2/3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x-1\right)\left(x-2\right)>0\)
=> \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>1\\x>2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
=> \(1< x< 2\)
b) 2x - 3 < 0
=> 2x < 3
=> x < 3/2
c) \(\left(2x-4\right)\left(9-3x\right)>0\)
=> 2(x - 2). 3(3 - x) > 0
=> (x - 2)(3 - x) > 0
=> \(\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}}\)
=> 2 < x < 3
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{x-2}{4}=\frac{-9}{2-x}\)
\(\Rightarrow\frac{x-2}{4}=\frac{9}{x-2}\)
\(\Rightarrow\left(x-2\right)^2=36\)
\(\Rightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}}\)
\(\frac{x}{15}=\frac{3}{y}\)
\(\Rightarrow xy=45\)
\(\Rightarrow x;y\inƯ\left(45\right)=\left\{\pm1;\pm3;\pm5;\pm9;\pm15;\pm45\right\}\)
Xét bảng
x | 1(loại) | -1 | 3(loại) | -3 | 5(loại) | -5 | 45 | -45(loại) | 15 | -15(loại) | 9 | -9(loại) |
y | 45(loại) | -45 | 15(loại) | -15 | 9(loại) | -9 | 1 | -1(loại) | 3 | -3(loại) | 5 | -5(loại) |
Vậy.......................................
d;Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{14}{7}=2\)
\(\Rightarrow x=4.2=8\)
\(y=3.2=6\)