Tìm n thuộc N để (10-2n) chia hết cho (n-2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=n\left(n+1\right)\left(n+2\right)\)
\(\text{a) }n;\text{ }n+1;\text{ }n+2\text{ là 3 số tự nhiên liên tiếp nên 1 trong 3 số chia hết cho 3.}\)
\(\Rightarrow A=n\left(n+1\right)\left(n+2\right)\text{ chia hết cho 3}\)
\(\text{b) Để A chia hết cho 15 thì A cần chia hết cho 5 (vì A luôn chia hết cho 3)}\)
\(\Rightarrow\text{1 trong 3 số }n;n+1;n+2\text{ phải chia hết cho 5.}\)
\(\Rightarrow n;n+1;n+2=5\text{ hoặc 10}\)
\(\Rightarrow n\in\left\{3;4;5;8;9\right\}\)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
a)để n+10 chia hết n+4 ta có
(n+10)-(n+4) chia hết n+4
n+10-n-4 chia hết n+4
6 chia hết n+4
n+4 thuộc Ư(6)={1;2;3;6} vì n+4> hoặc=4
n =2
b)để 2n+7 chia hết n+4,ta có
(2n+7)-2(n+4) chia hết n+4
(2n+7)-(2n+8) chia hết n+4
1 chia hết n+4
vì n+4> hoặc =4 =) n ko có giá trị
a) ta có: n + 15 chia hết cho n + 1
=> n+1+14 chia chia hết cho n + 1
...
b) ta có: 2n+10 chia hết cho n + 2
2n+4+6 chia hết cho n + 2
2.(n+2) + 6 chia hết cho n + 2
...
c) ta có: 3n + 14 chia hết cho n - 1
3n - 3 + 17 chia hết cho n - 1
=> 3.(n-1) + 17 chia hết cho n - 1
...
Ta có: n + 15 = (n+1) + 14
Vì \(n+1⋮n+1\)nên để \(\left(n+1\right)+14⋮n+1\) thì \(14⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(14\right)\)
\(\Rightarrow\left(n+1\right)\in\left\{1;2;7;14\right\}\)
Tương ứng \(n\in\left(0;1;6;13\right)\)(t/m)
Vậy \(n\in\left(0;1;6;13\right)\)
b) Ta có: 2n + 10 = 2n + 4 + 6 = 2(n+2) + 6
Vì \(2\left(n+2\right)⋮n+2\)nên để \(\text{ 2(n+2) + 6 }⋮n+2\)thì \(\text{ 6 }⋮n+2\)
\(\Rightarrow\left(n+2\right)\inƯ\left(6\right)\)
Làm tiếp như ý a)
c) Ta có: 3n + 14 = 3n - 3 + 17 = 3(n-1) + 17
Vì \(3\left(n-1\right)⋮n-1\)nên để \(3\left(n-1\right)+17⋮n-1\)thì \(17⋮n-1\)
=> n-1 là ước nguyên của 17
\(\Rightarrow\left(n-1\right)\in\left\{1;-1;17;-17\right\}\)
mà \(n\inℕ\)
nên tương ứng \(n\in\left\{2;0;18\right\}\)(t/m)
Vậy \(n\in\left\{2;0;18\right\}\)
a)2n-1 chia hết cho n-2
2n-4+3 chia hết cho n-2
2(n-2)+3 chia hết cho n-2
3 chia hết cho n-2 hay n-2 EƯ(3)={1;3;-1;-3}
=>nE{3;5;1;-1}
b)n2-n+2 chia hết cho n-1
n(n-1)+2 chia hết cho n-1
=>2 chia hết cho n-1 hay n-1EƯ(2)={1;2;-1;-2}
=>nE{2;3;0;-1}
C)tương tự
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
giúp mình vs
alo