cho số hữu tỉ a/b (a,b thuộc z;b>0). hãy so sánh:
a) a/b với 1
b) a/b với a+1/b+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Ta có: x=-2
nên \(\dfrac{10}{a-3}=-2\)
\(\Leftrightarrow a-3=-5\)
hay a=-2
a) Để x nguyên thì \(10⋮a-3\)
\(\Leftrightarrow a-3\inƯ\left(10\right)\)
\(\Leftrightarrow a-3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(a\in\left\{4;2;5;1;8;-2;13;-7\right\}\)
Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)
\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0
Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)
Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)
\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)
Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)
Lời giải:
Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$
$\Rightarrow {a}{b}>\frac{a+n}{b+n}$
Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$
$\Rightarrow {a}{b}=\frac{a+n}{b+n}$
Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$
$\Rightarrow {a}{b}<\frac{a+n}{b+n}$
Xét hai trường hợp b nguyên dương và b nguyên âm.
_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.
_xét b nguyên âm
Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương
theo minh thi
neu a<b thi ta co a(b+n) va b(a+n)
ab+an và ab + bn
vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n
neu a>b thi ta co a(b+n) va b(a+n)
ab+an va ab+bn
vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n
neu a=b thi a(b+n) và b(a+n)
ab+an và ab+ bn
vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n
\(\frac{a}{b}=\frac{a.\left(b+n\right)}{b.\left(b+n\right)}=\frac{a.b+a.n}{b^2+b.n}\)
\(\frac{a+n}{b+n}=\frac{b.\left(a+n\right)}{b.\left(b+n\right)}=\frac{a.b+b.n}{b^2+b.n}\)
Với a=b thì:
\(\frac{a}{b}=1;\frac{a+n}{b+n}=1\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)
Với a<b thì:
\(\frac{a.b+a.n}{b^2+b.n}<\frac{a.b+b.n}{b^2+b.n}\text{ hay }\frac{a}{b}<\frac{a+n}{b+n}\)
Với a>b thì:
\(\frac{a.b+a.n}{b^2+b.n}>\frac{a.b+b.n}{b^2+b.n}\text{ hay }\frac{a}{b}>\frac{a+n}{b+n}\)
a)Với a>b=>a/b>1
Với a=b=>a/b=1
Với a<b=>a/b<1
b) Với a/b dương:
a/b<a+1/b+1(công thức có thể tự chứng minh bằng quy đồng)
Với a/b âm:
a/b>a+1/b+1.
Chúc em học tốt^^