tìm x thuộc z biết (x+2).(3-x)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $(x+2)(3-x)>0$ nên xảy ra 2 TH:
TH1: $x+2>0$ và $3-x>0$
$\Rightarrow x>-2$ và $x<3$
$\Rightarrow -2< x< 3$
$\Rightarrow x\in \left\{-1; 0; 1; 2\right\}$
TH2: $x+2<0$ và $3-x<0$
$\Rightarrow x<-2$ và $x>3$
$\Rightarrow -2> x> 3$ (vô lý - loại)
Vậy $x\in \left\{-1; 0; 1; 2\right\}$
\(\left(3-2x\right)\left(x+2\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}3-2x>0\\x+2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x>-3\\x+2>0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x< \frac{3}{2}\\x>-2\end{cases}}}\)
V...
Bài 2:
a, |x-1| -x +1=0
|x-1| = 0-1+x
|x-1| = -1 + x
\(\orbr{\begin{cases}x-1=-1+x\\x-1=1-x\end{cases}}\)
\(\orbr{\begin{cases}x=-1+x+1\\x=1-x+1\end{cases}}\)
\(\orbr{\begin{cases}x=x\\x=2-x\end{cases}}\)
x = 2-x
2x = 2
x = 2:2
x=1
b, |2-x| -2 = x
|2-x| = x+2
\(\orbr{\begin{cases}2-x=x+2\\2-x=2-x\end{cases}}\)
2-x = x+2
x+x = 2-2
2x = 0
x = 0
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Ta có :
\(\left(x+3\right)\left(2-x\right)>0\)
TRƯỜNG HỢP 1 :
\(\hept{\begin{cases}x+3>0\\2-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow}-3< x< 2}\)
\(\Rightarrow\)\(x\in\left\{-2;-1;0;1\right\}\)
TRƯỜNG HỢP 2 :
\(\hept{\begin{cases}x+3< 0\\2-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}}\)
\(\Rightarrow\)\(x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{-2;-1;0;1\right\}\)
(x+3).(2-x)>0
khi và chi khi
x+3>0 và 2-x>0 suy ra x>-3 và x<2 suy ra -3<x<2(tm)
hoặc x+3<0 và 2-x<0 suy ra x<-3 và x>2 suy ra ko có giá trị x tm
vậy -3<x<2
a) \(\left(x-2\right)\left(x+2\right)>0\)
\(\Leftrightarrow x^2-4\ge0\)
\(\Leftrightarrow x\notin\left\{-1;0;1\right\}\)
\(\left(x-2\right)\left(x+2\right)>0\)
\(\Rightarrow\hept{\begin{cases}x-2\\x+2\end{cases}}\)cùng dấu
Trường hợp 1 : \(x-2\)và \(x+2\)cùng dương
\(\Rightarrow\hept{\begin{cases}x-2>0\\x+2>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0+2\\x>0-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\x>-2\end{cases}}\left(\text{vô lí}\right)\)
Nên ta loại trường hợp 1
Trường hợp 2 : \(x-2\)và \(x+2\)cùng âm
\(\Rightarrow\hept{\begin{cases}x-2< 0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0+2\\x< 0-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 2\\x< -2\end{cases}}\left(\text{}\text{vô lí}\right)\)
Nên ta loại trường hợp 2
Trường hợp 3 : \(x-2< x+2\)luôn đúng
\(\Rightarrow x\ge2\)
\(\left(x-2\right)\left(x+3\right)=15\)
Lập bảng là ra
a,\(\left(49-x^2\right).\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}49-x^2=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\pm7\\x=3\end{cases}}}\)
Vậy
b, \(x.\left(x-3\right)>0\)\(\Rightarrow x\ne0\)
Vì \(x.\left(x-3\right)>0\) \(\Rightarrow x;x-3\)cùng dấu
Xét x âm nên \(x.\left(x-3\right)>0\)(t/m) (cùng âm)
Xét x dương \(\ge3\) \(x.\left(x-3\right)>0\)(t/m) ( cùng dương)
Xét x dương \(\le3\)\(x.\left(x-3\right)\le0\)(ktm) (trái dấu)
Vậy....