phân tích thành nhân tử :
A= ( abc + bcd) ( b-c) - ( abc +acd) ( a-c) + ( abc + abd) ( a-b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mih thì giải ra rồi nhưng mih muốn xem cách làm có giống mình hk thôi
\(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
\(=a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc+abc\)
\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)
Vậy....
sửa đề thành \(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+2abc\)
\(=ab\left(a+b\right)+b^2c+bc^2+c^2a+ca^2+2abc\)
\(=ab\left(a+b\right)+\left(b^2c+abc\right)+\left(c^2a+c^2b\right)+\left(a^2c+abc\right)\)
\(=ab\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)\)
\(=\left(a+b\right)\left(ab+bc+a^2+ca\right)\)
\(=\left(a+b\right)\left[\left(ab+bc\right)+\left(c^2+ac\right)\right]\)
\(=\left(a+b\right)\left[b\left(a+c\right)+c\left(c+a\right)\right]\)
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\)