xác định m để y=1/2x+m2 cắt y=(1/4)x2 tại 2 điểm phân biệt A(x1;y1) B(x2;y2) sao cho y1-y2+x12-3x22=-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đường thẳng \(d^'\)và \(d\)cắt nhau tại một điểm A trên trục tung nên điểm A có hoành độ \(x_a=0\)và tạo độ A thỏa mãn phương trình \(d^'\)nên :\(\Rightarrow y_a=-2.0+1=1\)\(\Rightarrow A\left(0;1\right)\)Mà do a là giao điểm của 2 đường \(d;d^'\)nên toạn độ A cũng thỏa mãn phương trình của \(d\): \(\Rightarrow1=-m^2+m+1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow m\orbr{\begin{cases}m=0\\m=1\end{cases}}\)
câu b :
Xét phương trình hoành độ gia điểm của P và d có :
\(x^2=2mx-m^2+m+1\Leftrightarrow x^2-2mx+m^2-m-1=0\)
để hai đồ thị cắt nhau tại 2 điểm phân biệt thì \(\Delta^'=m^2+m^2-m-1=2m^2-m-1>0\)
\(\left(m-1\right)\left(2m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -\frac{1}{2}\\m>1\end{cases}}@\)
khi đó theo vieet có :\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m^2+m+1\end{cases}}\)
\(\Rightarrow y_1+y_2+2\left(x_1+x_2\right)=22\)với \(y_1=x^2_1;y_2=x_2^2\)
\(\Rightarrow\left(\left(x_1+x_2\right)^2-2x_1.x_2\right)+\left(x_1+x_2\right)2=22\)thay vieet ta có :
\(\left(2m\right)^2-2\left(-m^2+m+1\right)+2.2m=22\)
\(\Leftrightarrow6m^2+2m-24=0\Leftrightarrow\orbr{\begin{cases}m=\frac{-1+\sqrt{144}}{6}\\m=\frac{-1-\sqrt{144}}{6}\end{cases}}\)thỏa mãn @
Kết luận nghiệm
tính denta sai rùi rùi bạn ơi
phải là 145 chứ ko phải 144
Bài 1:
a) Để (d) đi qua A(1;-9) thì
Thay x=1 và y=-9 vào (d), ta được:
\(3m\cdot1+1-m^2=-9\)
\(\Leftrightarrow-m^2+3m+1+9=0\)
\(\Leftrightarrow m^2-3m-10=0\)
\(\Leftrightarrow m^2-5m+2m-10=0\)
\(\Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)
Vậy: Để (d) đi qua A(1;-9) thì \(m\in\left\{5;-2\right\}\)
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=3mx+1-m^2\)
\(\Leftrightarrow x^2-3mx+m^2-1=0\)
Để (d) cắt (P) tại hai điểm phân biệt thì phương trình hoành độ giao điểm của (P) và (d) có hai nghiệm phân biệt
\(\Leftrightarrow\text{Δ}\ge0\)
\(\Leftrightarrow\left(-3m\right)^2-4\cdot1\cdot\left(m^2-1\right)\ge0\)
\(\Leftrightarrow9m^2-8m^2+4\ge0\)
\(\Leftrightarrow m^2+4\ge0\)(luôn đúng)
Suy ra: (P) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1\cdot x_2=m^2-1\\x_1+x_2=3m\end{matrix}\right.\)
Theo đề, ta có phương trình: \(3m=2\cdot\left(m^2-1\right)\)
\(\Leftrightarrow2m^2-2-3m=0\)
\(\Leftrightarrow2m^2-4m+m-2=0\)
\(\Leftrightarrow2m\left(m-2\right)+\left(m-2\right)=0\)
\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-2=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\2m=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy: Để (d) cắt (P) tại hai điểm phân biệt có hoành độ \(x_1;x_2\) thỏa mãn \(x_1+x_2=2x_1x_2\) thì \(m\in\left\{2;-\dfrac{1}{2}\right\}\)
Xét phương trình hoành độ giao điểm parabol $(P)$ và đường thẳng $(d)$
Có: $x^2=3mx+1-m^$
$⇔x^2-3mx+m^2-1=0(1)$
Xét phương trình (1) có dạng $ax^2+bx+c=0$ với
$\begin{cases}a=1 \neq 0\\b=-3m\\c=m^2-1\end{cases}$
$⇒pt(1)$ là phương trình bậc hai một ẩn $x$
Có $\delta=b^2-4ac=9m^2-4.1.(m^2-1)=5m^2+4>0 \forall m$
suy ra $pt(1)$ có 2 nghiệm phân biệt $x_1;x_2$
Theo hệ thức Viete có: $\begin{cases}x_1+x_2=\dfrac{-b}{a}=3m\\x_1.x_2=\dfrac{c}{a}=m^2-1\end{cases}$
Nên $x_1+x_2=2x_1.x_2$
$⇔3m=2.(m^2-1)$
$⇔2m^2-3m-2=0$
$⇔(m-2)(2m+1)=0$
$⇔$\(\left[{}\begin{matrix}m=2\\m=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy $m∈2;\dfrac{-1}{2}$ thỏa mãn đề
Trả lời:
Phương trình hoành độ giao điểm (P) và (d) ta có:
\(-x^2=2x+m-1\)
\(\Leftrightarrow x^2+2x+m-1=0\)(1)
Ta có: \(\Delta=2^2-4.1.\left(m-1\right)\)
\(=4-4m+4\)
\(=8-4m\)
Để phương trình (1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)
\(\Leftrightarrow8-4m>0\)
\(\Leftrightarrow4m< 8\)
\(\Leftrightarrow m< 2\)
\(\Rightarrow\)Phương trình (1) có 2 nghiệm phân biệt
\(\Rightarrow\)(d) cắt (P) tại 2 diểm phân biệt \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)
Áp dụng Vi-ét \(\hept{\begin{cases}x_1+x_2=-2\left(1\right)\\x_1.x_2=m-1\left(2\right)\end{cases}}\)
Ta có \(y_1=-x_1^2\); \(y_2=-x_2^2\)
Theo đề bài:
\(x_1.y_1-x_2.y_2-x_1.x_2=4\)
\(\Leftrightarrow x_1.\left(-x_1^2\right)-x_2.\left(-x_2^2\right)-x_1.x_2=4\)
\(\Leftrightarrow-x_1^3+x_2^3-x_1.x_2=4\)
\(\Leftrightarrow-\left(x_1^3-x_2^3\right)-\left(m-1\right)=4\)
\(\Leftrightarrow-\left(x_1-x_2\right).\left(x_1^2+x_1.x_2+x_2^2\right)-\left(m-1\right)=4\)
\(\Leftrightarrow-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-2x_1.x_2+x_1.x_2\right]-\left(m-1\right)=4\)
\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(x_1+x_2\right)^2-x_1.x_2\right]-\left(m-1\right)=4\)
\(\Leftrightarrow-\left(x_1-x_2\right).\left[\left(-2\right)^2-m+1\right]-\left(m-1\right)=4\)
\(\Leftrightarrow-\left(x_1-x_2\right).\left(4-m+1\right)=4+m-1\)
\(\Leftrightarrow-\left(x_1-x_2\right).\left(3-m\right)=m+3\)
\(\Leftrightarrow-\left(x_1-x_2\right)=\frac{m+3}{3-m}\)
\(\Leftrightarrow x_1-x_2=\frac{m+3}{m-3}\)(3)
Từ (1) (3) ta có: \(\hept{\begin{cases}x_1+x_2=-2\\x_1-x_2=\frac{m+3}{m-3}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x_1=-2+\frac{m+3}{m-3}=\frac{9-m}{m-3}=-\left(m+3\right)\\x_1+x_2=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{-\left(m+3\right)}{2}\\x_2=\frac{m-1}{2}\end{cases}}\)
Thay x1, x2 vào (2) ta có
\(x_1.x_2=m-1\)
\(\Leftrightarrow\frac{-\left(m+3\right)}{2}.\frac{m-1}{2}=m-1\)
\(\Leftrightarrow\frac{-\left(m+3\right)}{2}=2\)
\(\Leftrightarrow-\left(m+3\right)=4\)
\(\Leftrightarrow m+3=-4\)
\(\Leftrightarrow m=-7\)(TM)
Vậy \(m=-7\) thì thỏa mãn bài toán
- Xét phương trình hoành độ giao điểm :
\(x^2-3mx+m^2+1=mx+m^2\)
\(\Leftrightarrow x^2-4mx+1=0\) ( 1 )
Có : \(\Delta^,=4m^2-1\)
- Để (d) cắt ( P ) tại 2 điểm phân biệt trên trục hoành
<=> Phương trình ( 1 ) có 2 nghiệm phân biệt .
<=> \(\Delta^,=4m^2-1\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}m\le-\dfrac{1}{2}\\m\ge\dfrac{1}{2}\end{matrix}\right.\)
- Theo viets : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=1\end{matrix}\right.\)
( đến đây giải nốt nhá hình như thiếu đề đoạn thỏa mãn :vvv )
a) \(A\in\left(d\right)\Rightarrow9=-3m+1-m^2\)
\(\Leftrightarrow m^2+3m+8=0\) \(\Leftrightarrow\left(m+\dfrac{3}{2}\right)^2+\dfrac{23}{4}=0\)(vn)
Vậy không tồn tại m để (d) đi qua A(-1;9)
b) Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=3mx+1-m^2\)
\(\Leftrightarrow2x^2-3mx-1+m^2=0\)
\(\Delta=9m^2-4.2\left(-1+m^2\right)=m^2+8>0\) với mọi m
=> Pt luôn có hai nghiệm pb => (d) luôn cắt (P) tại hai điểm pb
Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m}{2}\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)
\(x_1+x_2=2x_1x_2\)
\(\Leftrightarrow\dfrac{3m}{2}=2.\dfrac{m^2-1}{2}\) \(\Leftrightarrow2m^2-3m-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
x2 = 2x + m - 1
<=> x2 - 2x - m + 1 = 0
\(\Delta'=\left(-1\right)^2-\left(-m-1\right)=1+m+1=2+m\)
Để pt có 2 nghiệm phân biệt <=> \(\Delta'>0\) <=> 2 + m > 0 <=> m > -2
Theo hệ thức Viét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-m+1\end{matrix}\right.\)
Theo đề bài: x13- x23 + x1.x2 = 4
<=> (x1 + x2)3 - 3x1.x2 (x1 + x2) + x1.x2 = 4
Thay: 23 - 3(-m + 1). 2 + (-m + 1) = 4
<=> 8 + 6m - 6 - m + 1 - 4 = 0
<=> -1 + 5m = 0
<=> m = \(\dfrac{1}{5}\)
Vậy để m = \(\dfrac{1}{5}\) thì x13 - x23 + x1.x2 = 4