tìm x biết
(x-1)^3+3(x+1)^2=(x^2-2x+4)(x+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
a) \(\dfrac{x}{3}=\dfrac{4}{12}\Rightarrow x=\dfrac{4}{12}\cdot3=\dfrac{12}{12}=1\)
b) \(\dfrac{x-1}{x-2}=\dfrac{3}{5}\) (Điều kiện : \(x\ne2\))
\(\Rightarrow5\left(x-1\right)=3\left(x-2\right)\)
\(\Leftrightarrow5x-5=3x-6\Leftrightarrow5x-3x=-6+5\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
c) \(2x:6=\dfrac{1}{4}\Leftrightarrow2x=\dfrac{1}{4}\cdot6=\dfrac{6}{4}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{3}{2}:2=\dfrac{3}{2}\cdot\dfrac{1}{2}=\dfrac{3}{4}\)
d) \(\dfrac{x^2+x}{2x^2+1}=\dfrac{1}{2}\)
\(\Rightarrow2\left(x^2+x\right)=2x^2+1\)
\(\Leftrightarrow2x^2+2x=2x^2+1\)
\(\Leftrightarrow2x^2+2x-2x^2=1\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\).
PT \(\Rightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)
\(\Rightarrow-4x=-4\) \(\Leftrightarrow x=1\)
Vậy \(x=1\)
Ta có: \(2x\left(x+1\right)-3\left(x+2\right)=x\left(2x-1\right)+4\left(x-2\right)-2\)
\(\Leftrightarrow2x^2+2x-3x-6=2x^2-x+4x-8-2\)
\(\Leftrightarrow2x^2-x-6=2x^2+3x-10\)
\(\Leftrightarrow2x^2-x-6-2x^2-3x+10=0\)
\(\Leftrightarrow-4x+4=0\)
\(\Leftrightarrow-4x=-4\)
hay x=1
Vậy: x=1
Bạn nên viết lại đề bài cho sáng sủa, rõ ràng để người đọc dễ hiểu hơn.
f: =>4(x^2+4x-5)-x^2-7x-10=3(x^2+x-2)
=>4x^2+16x-20-x^2-7x-10-3x^2-3x+6=0
=>6x-24=0
=>x=4
e: =>8x+16-5x^2-10x+4(x^2-x-2)=4-x^2
=>-5x^2-2x+16+4x^2-4x-8=4-x^2
=>-6x+8=4
=>-6x=-4
=>x=2/3
d: =>2x^2+3x^2-3=5x^2+5x
=>5x=-3
=>x=-3/5
b: =>2x^2-8x+3x-12+x^2-7x+10=3x^2-12x-5x+20
=>-12x-2=-17x+20
=>5x=22
=>x=22/5
a) (x + 3)3 - x(3x + 1)2 + (2x + 1)(4x2 - 2x + 1) = 28
=> x3 + 9x2 + 27x + 27 - x(9x2 + 6x + 1) +(2x + 1)[(2x)2 - 2.x.1 + 12 ] = 28
=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + (2x)3 + 13 = 28
=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 + 1 = 28
=> (x3 - 9x3 + 8x3) + (9x2 - 6x2) + (27x - x) + (27 + 1) = 28
=> 3x2 + 26x + 28 = 28
=> 3x2 + 26x = 0
=> 3x2 + 26x = 0
=> \(3x\left(x+\frac{26}{3}\right)=0\)
=> 3x = 0 hoặc x + 26/3 = 0
=> x = 0 hoặc x = -26/3
b) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
=> \(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)
=> \(x^6-3x^4+3x^2-1-x^6+1=0\)
=> \(\left(x^6-x^6\right)-3x^4+3x^2+\left(-1+1\right)=0\)
=> \(-3x^4+3x^2=0\)
=> \(-\left(3x^4-3x^2\right)=0\)
=> \(3x\left(x^3-x\right)=0\)
=> \(\orbr{\begin{cases}3x=0\\x^3-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x\left(x^2-1\right)=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)