K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2015

A = 31 + 32 + 33 + .....+ 32006

=>3A=3.(31 + 32 + 33 + .....+ 32006) = 32 + 33 + .....+ 32007

=>2A=3A-A=(32 + 33 + .....+ 32007)-( 31 + 32 + 33 + .....+ 32006)=32007-3

=>A=(32007-3)/2

6 tháng 5 2015

A = 31 + 32 + 33 + .....+ 32006

=>3A=3.(31 + 32 + 33 + .....+ 32006) = 32 + 33 + .....+ 32007

=>2A=3A-A=(32 + 33 + .....+ 32007)-( 31 + 32 + 33 + .....+ 32006)=32007-3

=>A=(32007-3)/2

17 tháng 12 2023

  A = 1 +  3  + 32 + 33 + ... + 3100

3A = 3 + 32 + 33 +34+ .... + 3101

3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)

2A     = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100

2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)

2A = 3101 - 1

A = \(\dfrac{3^{101}-1}{2}\)

29 tháng 11 2021

A = 1 + 3 + 32 + 33 +.... +3100

3A = 3(1 + 3 + 32 + 33 +....+3100)

3A = 3 + 32 + 33 + 34 +....+3101

3A - A = 2A = (3 + 32 + 33 + 34 +.... + 3101) - (1 + 3 + 32 + .... + 3100)

2A = ( 3 - 3 ) + ( 32 - 32) +.....+ (3100 - 3100) + (3101 - 1)

2A = 0 + 0 +....+ 0 + 3101 - 1

2A = 3101 - 1

A = (3101 - 1) : 2

29 tháng 11 2021

\(\Rightarrow3A=3+3^2+3^3+...+3^{101}\)

\(\Rightarrow3A-A=3+3^2+3^3+...+3^{101}-1-3-3^2-...-3^{100}\)

\(\Rightarrow2A=3^{101}-1\)

\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

 

 

16 tháng 9 2018

\(M=3^5+3^6+..+3^{32}\)

\(\Rightarrow3M=3^6+3^7+3^8+...+3^{33}\)

\(\Rightarrow3M-M=3^{33}-3^5\)

\(M=\frac{3^{33}-3^5}{2}\)

Có \(3^{33}-3^5< 3^{33}\)nên \(\frac{3^{33}-3^5}{2}< 3^{33}\)

Vậy \(M< 3^{33}\)

27 tháng 2 2016

Thường thì phân số lớp 4 là tính ra luôn nhỉ?

27 tháng 2 2016

\(\frac{31x32-62}{30x31}=\frac{932}{930}=\frac{466}{465}\)

30.31.32.33.A=864y3040

=>(3.3)(10.31.32.11).A=864y3040

=>9.(10.31.32.11).A=864y3040

=>864y3040 chia hết cho 9

=>8+6+4+y+3+0+4+0=25+y chia hết cho 9

=>y=2

ta có:86423040=30.31.32.33.88

vậy y=2

3 tháng 6 2015

30 = 3 x 10

33 = 3 x 11

Tích trên có thể phân tích có 2 thừa số 3 =>  chia hết cho 9

Vậy y cần tìm là chữ số 2

a) Ta có: \(\dfrac{25^{28}+25^{24}+25^{20}+...+25^4+1}{25^{30}+25^{28}+...+25^2+1}\)

\(=\dfrac{25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+...+\left(25^4+1\right)}{25^{28}\left(25^2+1\right)+25^{24}\left(25^2+1\right)+...+\left(25^2+1\right)}\)

\(=\dfrac{\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}{\left(25^2+1\right)\left(25^{28}+25^{24}+...+1\right)}\)

\(=\dfrac{\left(25^4+1\right)\cdot\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}{\left(25^2+1\right)\left[25^{24}\left(25^4+1\right)+25^{16}\left(25^4+1\right)+25^8\left(25^4+1\right)+\left(25^4+1\right)\right]}\)

\(=\dfrac{\left(25^4+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^4+1\right)\left(25^{24}+25^{16}+25^8+1\right)}\)

\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left[25^{16}\left(25^8+1\right)+\left(25^8+1\right)\right]}\)

\(=\dfrac{\left(25^8+1\right)\left(25^{16}+1\right)}{\left(25^2+1\right)\left(25^8+1\right)\left(25^{16}+1\right)}\)

\(=\dfrac{1}{25^2+1}=\dfrac{1}{626}\)

23 tháng 3 2016

A = 88

y = 2

23 tháng 3 2016

A= 86423040

29 tháng 3 2022

yggucbsgfuyvfbsudy

30 tháng 3 2022

????????