Tìm x,y biết:
|3x - 4| + |3y + 5| = 0
(Giải nhanh giùm gấp...)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{4}=>\frac{3x}{9}=\frac{2y}{8}=\frac{3x-2y}{9-8}=\frac{5}{1}=5\)
=> x = 15 ; y=20
ta có : x(y+2) +3y +6 =7
<=> xy +2x +3y +6 =7
<=> y(x+3)+2(x+3)=7
<=> (y+2)(x+3) = 7.1
vì 7 là số nguyên tố suy ra 1 trong hai tích y+2 hoặc x+3 =1
mà x và y là các số tự nhiên nên
=> y+2 >= 2 và x+3>=3 nên cả 2 tích không thể bằng 1 . vậy phương trình vô nghiệm
Ta có:\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)
Từ (1) và (2) ta đc:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}\Rightarrow}\hept{\begin{cases}x=20\\y=30\\z=42\end{cases}}\)
1. 2x = 3y-2
2x+2x = 3y
4x = 3y
=> \(\frac{x}{3}=\frac{y}{y}\Rightarrow\frac{x+y}{3+4}=\frac{14}{7}=2\)
=> \(\frac{x}{3}=2\Rightarrow x=6\)
=> \(\frac{y}{4}=2\Rightarrow y=8\)
\(\frac{x}{2}:\left(-y\right):z=3:5:8\)
\(\Rightarrow\frac{x}{6}=\frac{y}{-5}=\frac{z}{8}\)
\(\Rightarrow\frac{3x}{18}=\frac{y}{-5}=\frac{2z}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3x}{18}=\frac{y}{-5}=\frac{2z}{16}=\frac{3x+y-2z}{18+\left(-5\right)-16}=\frac{14}{-3}=\frac{-14}{3}\)
\(\Rightarrow x=\frac{-14}{3}.18:3=-28\)
\(y=\frac{-14}{3}.\left(-5\right)=\frac{70}{3}\)
\(z=\frac{-14}{3}.16:2=\frac{-112}{3}\)
Ta có
\(\text{|3x - 4| + |3y + 5| = 0}\)
\(\left|3x-4\right|\ge0;\left|3y-5\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|3x-4\right|=0\\\left|3y-5\right|=0\end{cases}\Rightarrow\hept{\begin{cases}3x-4=0\\3y-5=0\end{cases}}}\Rightarrow\hept{\begin{cases}3x=4\\3y=5\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{5}{3}\end{cases}}}\)
\(\left|3x-4\right|+\left|3y+5\right|=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy \(x=\frac{4}{3};y=\frac{-5}{3}\)