Tìm chữ số tận cùng của \(8^{49087}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
a, vì \(1978\equiv8\)( mod 10 ) \(\Rightarrow1978^4\equiv6\) ( mod 10 )
mặt khác : \(1978^{4k}\equiv6\) ( mod 10 )
Vậy chữ số tận cùng của C là 6
b. vì \(C\equiv6\) ( mod 10 ) nên \(C^{20}\equiv76\)( mod 100 ) \(\Rightarrow C^{20m}\equiv76\)( mod 100 )
mặt khác : \(1986\equiv6\)( mod 20 ) \(\Rightarrow1986^8\equiv16\)( mod 20 )
do đó : \(1986^8=20k+16\); với k thuộc N
\(\Rightarrow C=1978^{20k+16}=1978^{16}.\left(1978^{20}\right)^k\equiv1978^{16}.76\) ( mod 100 )
lại có : \(1978\equiv-22\)( mod 100 ) \(\Rightarrow1978^4\equiv56\)( mod 100 )
\(\Rightarrow\left(1978^4\right)^4\equiv56^4\) ( mod 100 ) hay \(1978^{16}\equiv96\)( mod 100 )
từ đó ta có : \(C\equiv96.76\)( mod 100 ) \(\Rightarrow C\equiv76\)( mod 100 )
vậy C có hai chữ số tận cùng là 76
Nếu số sau khi bỏ chữ số tận cùng là \(1\)phần thì số ban đầu là \(10\)phần cộng thêm \(8\)đơn vị.
Hiệu số phần bằng nhau là:
\(10-1=9\)(phần)
Số sau khi bỏ chữ số tận cùng là:
\(\left(161-8\right)\div9=17\)
Số cần tìm là: \(178\).
cái này minh chỉ giải dc câu 1 thôi nhé.
bấm máy tính CASIO FX-570 ES/VN PLUS.
quy trình ấn phím:
SHIFT -> LOG(dưới nút ON) -> 2 -> X^*(bên cạnh dấu căn) -> ALPHA -> X -> bấm phím xuống -> 1 -> bấm phím lên -> 20.
bấm dấu bằng.
ta có kết quả là 2097150.
vậy số tận cùng là 0.
2. ta có:
220 ≡76220≡ dư 76(chia cho 100)
=>(220)5≡765≡76(220)5≡765≡ dư76 ( chia cho 100)
=> 2100≡762100≡ dư76(chia cho 100)
=>2100 có hai chữ tận cùng là 76
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
849087=849084+3=(.....6) . 83=(....6) . 512=(.....2)
Ta có:
849087=(84)12271.83
=(...6)12271.(...2)
=(...6).(...2)=(...2)