X2 + 16X+ 64
16X2 - 8X +4
25X2+ 10X +1
X2 - 12X + 36
4X2- 4X + 1
X2 - 2X+ 1
X2 + X+ 1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích các mẫu thành nhân tử sau đó nhân cả 2 vế của phương trình với 2 ta được:
Pt tương đương:
1 ( x + 1 ) ( x + 3 ) + 1 ( x + 3 ) ( x + 5 ) + 1 ( x + 5 ) ( x + 7 ) + 1 ( x + 7 ) ( x + 9 ) = 1 5
⇔ 2 ( x + 1 ) ( x + 3 ) + 2 ( x + 3 ) ( x + 5 ) + 2 ( x + 5 ) ( x + 7 ) + 2 ( x + 7 ) ( x + 9 ) = 2 5
ĐKXĐ: x ≠ -1; -3; -5; -7; -9
Khi đó:
<=> 1 x + 1 - 1 x + 3 + 1 x + 3 - 1 x + 5 + 1 x + 5 - 1 x + 7 + 1 x + 7 - 1 x + 9 = 2 5
<=> 1 x + 1 - 1 x + 9 = 2 5
<=> 1 ( x + 9 ) - 1 ( x + 1 ) ( x + 1 ) ( x + 9 ) = 2 ( x + 1 ) ( x + 9 ) 5 ( x + 1 ) ( x + 9 )
=> 5[x + 9 – (x + 1)] = 2(x + 1) (x + 9)
ó 5(x + 9 – x – 1) = 2 x 2 + 20x + 18
ó 2 x 2 + 20x – 22 = 0
a) Ta có P = 4 x 2 ( x − 2 y ) 2 ( x + 2 y ) 2 . ( x + 2 y ) 2 16 x = x 4 ( x − 2 y ) 2
Với x ≠ 0 , x ≠ ± 2 y
b) Ta có Q = 16 x ( x 2 − 16 ) 2 . x 2 − 16 2 x = 8 16 − x 2 với x ≠ 0 , x ≠ ± 4
a) (2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x(2x+12x−1−2x−12x+1):4x10x−5=(2x+1)2−(2x−1)2(2x−1)(2x+1).10x+54x
=4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x4x2+4x+1−4x2+4x−1(2x−1)(2x+1).5(2x+1)4x
=8x.5(2x+1)(2x−1)(2x+1).4x=102x−18x.5(2x+1)(2x−1)(2x+1).4x=102x−1
b) (1x2+x−2−xx+1):(1x+x−2)(1x2+x−2−xx+1):(1x+x−2)
=(1x(x+1)+x−2x+1):1+x2−2xx(1x(x+1)+x−2x+1):1+x2−2xx
=1+x(x−2)x(x+1).xx2−2x+11+x(x−2)x(x+1).xx2−2x+1
=(x2−2x+1)xx(x+1)(x2−2x+1)=1x+1(x2−2x+1)xx(x+1)(x2−2x+1)=1x+1
c) 1x−1−x3−xx2+1.(1x2−2x+1+11−x2)1x−1−x3−xx2+1.(1x2−2x+1+11−x2)
=1x−1−x3−xx2+1.[1(x−1)2−1(x−1)(x+1)]
a) (2x+12x−1−2x−12x+1):4x10x−5(2x+12x−1−2x−12x+1):4x10x−5
= 0 - 0
= 0
b) (1x2+x−2−xx+1):(1x+x−2);(1x2+x−2−xx+1):(1x+x−2)
= (x-xx+1) : (2x-2) : (x-xx+1) : (2x-2)
c) 1x−1−x3−xx2+1.(1x2−2x+1+11−x2)
= -2x-1-xx2+1. (14 - 4x)
= -x2-1-xx2+14-4x
= -6x-xx2+13
Biểu thức x + 1 x 2 xác định khi x ≠ 0
Biểu thức x 2 + 1 x 2 + 2 x + 1 1 x + 1 xác định khi x ≠ 0 và x ≠ - 1
Với điều kiện x ≠ 0 và x ≠ - 1, ta có:
Vậy giá trị của biểu thức x + 1 x 2 : x 2 + 1 x 2 + 2 x + 1 1 x + 1 bằng 1 với mọi giá trị x ≠ 0 và x ≠ -1.
Áp dụng hằng đẳng thức
a) x2+16x+64
=> x2+2.8x+82
=> (x+8)2
b) 25x2+10x+1
=> (5x+1)2
c) x2-12x+36
=> (x+6)2
d) 4x2-4x+1
=> (2x-1)2
e) x2-2x+1
=> (x-1)2
Thiếu câu f)
x2+x+1/4
=> (x+1/2)2