CMR: a*(a+2)<(a+1)^2
Các bạn giúp mình với. Mình cảm ơn trước
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2017}< 1\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\)
\(=2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2016^2}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2017}}\right)\)
\(A=1-\frac{1}{2^{2017}}< 1\) (đpcm)
Đặt A=1/2+(1/2)^2+...+(1/2)^2017
=>1/2 A=(1/2)^2+(1/2)^3+...+(1/2)^2017+(1/2)2018 (Nhân cả 2 vế cho 1/2)
=>1/2 A - A=(1/2)^2018-1/2
=>-1/2 A =(1/2)^2018-1/2
=>A=1-(1/2)^2017 <1 (Vì (1/2)^2017>0)
Đug ko biết
Lời giải:
$A=\underbrace{(100+98+96+....+2)}_{M}-\underbrace{(99+97+....+1)}_{N}$
Tổng số hạng của $M$: $(100-2):2+1=50$
$M=(100+2).50:2=2550$
Tổng số hạng của $N$: $(99-1):2+1=50$
$N=(99+1).50:2=2500$
$A=M-N=2550-2500=50$
Sửa đề: A=100+98+96+...+2-99-97-...-1
=100-99+98-97+...+2-1
=1+1+...+1
=50
Xét tam giác ABD và tam giác ACDcó AB+BD>AD vàAC+CD>AD(BĐT tam giác ABD và ACD)
Cộng 2 vế lại với nhau ta được:
AB+AC+BD+CD>2AD
=>AB+AC+BC>2AD
Mà AB+AC+BC là chu vi của tam giác ABC
=>1/2(AB+AC+BC)>AD
Vậy nửa chu vi của tam giác ABC>AD
a,
143,8 x 2,25 + 143,8 x 7,75
= 143,8 x ( 2,25 + 7,75 )
= 143,8 x 10
= 1438
b, 12% x 5 + 0,4 x 2 + 2
= 0,12 x 5 + 0,4 x 2 + 2
= 0,6 + 0,8 + 2
= 0,6 + 3
= 3,6
#Giang
\(a\left(a+2\right)< \left(a+1\right)^2\)
\(\Leftrightarrow a^2+2a< a^2+2a+1\)
\(\Leftrightarrow0< 1\)(luôn đúng)
Do bđt cuối luôn đúng nên bđt ban đầu đc cm
Do a2 + 2a < a2 + 2a + 1
=> a.(a + 2) < a2 + a + a + 1
=> a.(a + 2) < a.(a + 1) + (a + 1)
=> a.(a + 2) < (a + 1)2 (đpcm)