Cho tam giác ABC, D thuộc AB, E thuộc AC, Ad = 1/3 , Ae = 1/3 Ac, BC = 9cm
Tính DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại B và ΔBED vuông tại E có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
Do đó: ΔBAD=ΔBED
b: Xét ΔBDK vuông tại B và ΔEDC vuông tại E có
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)
Do đó: ΔBDK=ΔEDC
Suy ra: BK=EC
Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE
và BK=EC
nên AK=AC
a, xét tam giác DAB và tam giác DAE có : DA chung
góc BAD = góc EAD do AD là phân giác của góc BAC (gt)
góc ABC = góc DEA = 90 do ...
=> tam giác DAB = tam giác DAE (ch - gn)
=> AB = AE( đn)
b, gọi AD cắt BE tại O
xét tam giác OBA và tam giác OEA có : AO chung
góc BAD = góc EAD (câu a)
AB = AE (câu a)
=> tam giác OBA = tam igacs OEA (c - g - c)
=> góc BOA = góc EOA
mà góc BOA + góc EOA = 180 do kề bù
=> góc BOA = 90
=> AD _|_ BE (đn)
c, có góc ABC = 90
=> tam giác DBA vuông tại B (đn)
=> DA > AB (1)
AD là phân giác của góc BAC (gt)
=> góc DAC = 1/2 góc BAC mà góc BAC = 60 (GT)
=> góc DAC = 1/2.60 = 30
xét tam giác ABC vuông tại B (gt) => góc C + góc BAC = 90 (đl) mà góc BAC = 60 (gt) => góc C = 30
=> góc DAC = góc C
=> tam giác DAC cân tại D (đl)
=> DC = DA (đn) (2)
(1)(2) => DC > AB
a, xét 2 tam giác vuông BAD và EAD có:
AD cạnh chung
\(\widehat{BAD=\widehat{EAD}}\)(gt)
=> \(\Delta BAD=\Delta EAD\)(CH-GN)
=> AB=AE(2 cạnh tương ứng)
b, gọi O là giao điểm của AD và BE
xét t.giác OAB và t.giác OAE có:
OA cạnh chung
\(\widehat{OAB=\widehat{OAE}}\)(gt)
AB=AE(câu a)
=> t.giác OAB=t.giác OAE(c.g.c)
=> \(\widehat{AOB=\widehat{AOE}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{AOE}}\)=90 độ
=> AD\(\perp\)BE
c, xét t.giác ABC có: \(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180 độ
=> 60 độ + 90 độ + \(\widehat{C}\)=180 độ
=> \(\widehat{C}\)=30 độ(1)
mà AD là phân giác của \(\widehat{BAC}\)=> \(\widehat{CAD}\)=30 độ (2)
từ (1) và (2) suy ra tam giác ADC cân tại D
=> AD=DC(3)
trong tam giác vuông ADB có: AD>AB (cạnh huyền>cạnh góc vuông)(4)
từ (3) và (4) suy ra DC>AB
A B C D E O
a) Xét ΔADB vuông tại D và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
AD chung
Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)
a) xet tam giac abd va tam giac aed co
bad=ead
ad la canh chung
abd=aed=900
=>tam giac abd= tam giac aed
=>bd=ed
A B D C E
Cm:a) Xét t/giác ABD và t/giác EBD
có: AB = EB (gt)
\(\widehat{ABD}=\widehat{EBD}\) (gt)
BD : chung
=> t/giác ABD = t/giác EBD (c.g.c)
=> AD = DE (2 cạnh t/ứng)
b. xem lại đề