K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại B và ΔBED vuông tại E có 

AD chung

\(\widehat{BAD}=\widehat{EAD}\)

Do đó: ΔBAD=ΔBED

b: Xét ΔBDK vuông tại B và ΔEDC vuông tại E có 

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)

Do đó: ΔBDK=ΔEDC

Suy ra: BK=EC

Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC

3 tháng 5 2019

a, xét tam giác DAB và tam giác DAE có  : DA chung

góc BAD = góc EAD do AD là phân giác của góc BAC (gt)

góc ABC = góc DEA = 90 do ...

=> tam giác DAB = tam giác DAE (ch - gn)

=> AB = AE( đn)

b, gọi AD cắt BE tại O

xét tam giác OBA và tam giác OEA có : AO chung

góc BAD = góc EAD (câu a)

AB = AE (câu a)

=> tam giác OBA = tam igacs OEA (c - g - c)

=> góc BOA = góc EOA 

mà góc BOA + góc EOA = 180 do kề bù

=> góc BOA = 90

=> AD _|_ BE (đn)

c, có góc ABC = 90

=> tam giác DBA vuông tại B (đn)

=> DA > AB      (1)

AD là phân giác của góc BAC (gt)

=> góc DAC = 1/2 góc BAC mà góc BAC = 60 (GT)

=> góc DAC = 1/2.60 = 30 

xét tam giác ABC vuông tại B (gt) => góc C + góc BAC = 90 (đl) mà góc BAC = 60 (gt) => góc C = 30

=> góc DAC = góc C

=> tam giác DAC cân tại D (đl)

=> DC = DA (đn)        (2)

(1)(2) => DC > AB

3 tháng 5 2019

a, xét 2 tam giác vuông BAD và EAD có:

              AD cạnh chung

             \(\widehat{BAD=\widehat{EAD}}\)(gt)

=> \(\Delta BAD=\Delta EAD\)(CH-GN)

=> AB=AE(2 cạnh tương ứng)

b, gọi O là giao điểm của AD và BE

xét t.giác OAB và t.giác OAE có:

          OA cạnh chung

          \(\widehat{OAB=\widehat{OAE}}\)(gt)

         AB=AE(câu a)

=> t.giác OAB=t.giác OAE(c.g.c)

=> \(\widehat{AOB=\widehat{AOE}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOB=\widehat{AOE}}\)=90 độ

=> AD\(\perp\)BE

c, xét t.giác ABC có: \(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)=180 độ 

=> 60 độ + 90 độ + \(\widehat{C}\)=180 độ

=> \(\widehat{C}\)=30 độ(1)

mà AD là phân giác của \(\widehat{BAC}\)=> \(\widehat{CAD}\)=30 độ (2)

từ (1) và (2) suy ra tam giác ADC cân tại D

=> AD=DC(3)

trong tam giác vuông ADB có:   AD>AB (cạnh huyền>cạnh góc vuông)(4)

từ (3) và (4) suy ra DC>AB

  A B C D E O

a) Xét ΔADB vuông tại D và ΔADC vuông tại D có 

AB=AC(ΔABC cân tại A)

AD chung

Do đó: ΔADB=ΔADC(cạnh huyền-cạnh góc vuông)

21 tháng 4 2017

a) xet tam giac abd va tam giac aed co

bad=ead

ad la canh chung

abd=aed=900

=>tam giac abd= tam giac aed

=>bd=ed

22 tháng 4 2017

còn b,c,d thì s

16 tháng 7 2019

A B D C E

Cm:a) Xét t/giác ABD và t/giác EBD

có: AB = EB (gt)

 \(\widehat{ABD}=\widehat{EBD}\) (gt)

 BD : chung

=> t/giác ABD = t/giác EBD (c.g.c)

=> AD = DE (2 cạnh t/ứng)

b. xem lại đề