tìm y'
a) \(y=sin^3x\)
b) \(y=cos^3x\)
c) \(y=sinx.cos^2x\)
d) \(y=\sqrt[3]{x}+\sqrt[3]{\left(x+1\right)^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) ta có: \(x:3=y.15\Rightarrow x\cdot\frac{1}{3}=y.15\Rightarrow\frac{x}{15}=\frac{y}{\frac{1}{3}}\)
ADTCDTSBN
...
2) bn ghi thiếu đề r
3) ta có: \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)
mà xy = 189 => 7k.3k = 189
21 k2 = 189
k2 = 9 = 32 = (-3)2 => k = 3 hoặc k = - 3
TH1: k = 3
x = 7.3 => x = 21
y = 3.3 => y = 9
...
4) ta có: \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
ADTCDTSBN
...
ae ai trả lời nhanh và đúng nhất, bài bản thì mình k
a) 2x - 1 = 1 và y - 8 =17 hoặc 2x - 1 = 17 và y - 8 =1
=> x = 1 và y = 25 hoặc x = 9 và y = 9
b) 2x - 5 = 1 và y - 6 =17 hoặc 2x - 5 = 17 và y - 6 =1
=> x = 3 và y = 23 hoặc x = 11 và y = 7
a. \(y'=3sin^2x.\left(sinx\right)'=3sin^2x.cosx\)
b. \(y'=3cos^2x.\left(cosx\right)'=-3cos^2x.sinx\)
c. \(y'=cosx.cos^2x+2cosx.\left(-sinx\right).sinx=cos^3x-2cosx.sin^2x\)
d. \(y=x^{\dfrac{1}{3}}+\left(x+1\right)^{\dfrac{2}{3}}\Rightarrow y'=\dfrac{1}{3}x^{-\dfrac{2}{3}}+\dfrac{2}{3}\left(x+1\right)^{-\dfrac{1}{3}}=\dfrac{1}{3\sqrt[3]{x^2}}+\dfrac{2}{3\sqrt[3]{x+1}}\)