3/5< ... , ... , ... < 4/5
Nhanh nhé! mình phải nộp r!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-5}{3}-\left(\dfrac{5}{12}-\dfrac{3}{4}\right)< x< \dfrac{11}{6}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{-5}{3}-\left(\dfrac{5}{12}-\dfrac{3}{4}\right)\\x< \dfrac{11}{6}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{-5}{3}-\dfrac{5}{12}+\dfrac{3}{4}\\x< \dfrac{11}{6}-\dfrac{1}{3}-\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{-20}{12}-\dfrac{5}{12}+\dfrac{9}{12}\\x< \dfrac{22}{12}-\dfrac{4}{12}-\dfrac{3}{12}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>-\dfrac{4}{3}\\x< \dfrac{5}{4}\end{matrix}\right.\Rightarrow x\in\left\{-\dfrac{4}{3};\dfrac{5}{4}\right\}}\)
Ta có: \(2015^{2016}=2015^{2000}.2015^{16}\)
Và \(2016^{2015}=2016^{2000}.2016^{15}\)
=> Ta có: \(2015^{2000}< 2016^{2000}\)
\(2015^{16}< 2016^{15}\)
Vậy \(2015^{2016}< 2016^{2015}\)
Ta có: (2 - x)(4/5 - x) < 0
=> \(\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}}\) hoặc \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< \frac{4}{5}\end{cases}}\) (loại) hoặc \(\hept{\begin{cases}x< 2\\x>\frac{4}{5}\end{cases}}\)
=> \(\frac{4}{5}< x< 2\)
\(\left(2-x\right)\left(\frac{4}{5}-x\right)< 0\)
TH1 : \(\hept{\begin{cases}2-x>0\\\frac{4}{5}-x< 0\end{cases}\Rightarrow\hept{\begin{cases}2>x\\\frac{4}{5}< x\end{cases}}}\)\(\Rightarrow\frac{4}{5}< x< 2\)
Th2 : \(\hept{\begin{cases}2-x< 0\\\frac{4}{5}-x>0\end{cases}\Rightarrow\hept{\begin{cases}2< x\\\frac{4}{5}>x\end{cases}}}\)\(\Rightarrow x\in\varnothing\)
Vậy \(\frac{4}{5}< x< 2\)
\(N=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{9^2}\)
\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+....+\frac{1}{9.9}\)
\(N\)bé hơn \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}=N_1\)
\(N_1=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{8.9}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\) \((1)\)
\(N\)lớn hơn \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}=N_2\)
\(\Rightarrow N_2=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}\)
\(=\frac{5}{10}-\frac{1}{10}=\frac{2}{5}\) \((2)\)
Từ \((1)\)và \((2)\)suy ra ; \(\frac{2}{5}\)bé hơn N bé hơn \(\frac{8}{9}\)
Học tốt
Nhớ kết bạn với mình
Ta có: \(\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};\frac{1}{5^2}< \frac{1}{4.5};....;\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{49}{100}< \frac{1}{2}\)
Vậy \(C=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
13/20; 7/10; 3/4
13/20; 14/20; 15/20