Tính tổng:
a)A=6/15.18+6/18.21+6/21.24+....+6/87.90) b) B= 1/10+1/15+1/21+....+1/120
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(\rightarrow\frac{6}{3}.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(\rightarrow2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(\rightarrow2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(\rightarrow\frac{1}{9}\)
A = 6/3 . ( 1/15.18 + 1/18.21 + 1/21/24 + . . . + 1/87.90 )
A = 6/3 . ( 1/15 - 1/18 + 1/18 - 1/21 + 1/21 - 1/24 + . . . + 1/87 - 1/90 )
A = 2 . ( 1/15 - 1/90 )
A = 2. 5/90
A = 10/90 = 1/9
\(\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{84.87}+\frac{6}{87.90}\)
\(=\frac{6}{3}\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{84.87}+\frac{3}{87.90}\right)\)
\(=2\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{84}-\frac{1}{87}+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2\left(\frac{1}{15}-\frac{1}{90}\right)=2\left(\frac{6-1}{90}\right)=2\times\frac{1}{18}=\frac{1}{9}\)
=> A = 6/3.( 1/15 - 1/18 + 1/18 - 1/21 + ..... + 1/87 - 1/90 )
=> A = 2.( 1/15 - 1/90 )
=> A = 2.5/90
=> A = 10/90 = 1/9
#)Giải :
\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
\(C=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}=7\left[\frac{1}{7}\left(\frac{7}{10.11}+\frac{7}{11.12}+...+\frac{7}{69.70}\right)\right]\)
\(C=7\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(C=7\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(C=7\left(\frac{1}{10}-\frac{1}{70}\right)=7\times\frac{3}{35}=\frac{21}{35}\)
C = \(\frac{6}{15.18}+\frac{6}{18.21}+...+\frac{6}{87.90}\)
C = \(2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
C = \(2.\left(\frac{1}{15}-\frac{1}{90}\right)=2.\frac{1}{18}\)
C = \(\frac{1}{9}\)
\(B=\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+\frac{6}{7.9}+...+\frac{6}{99.101}\)
\(=3.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{9}{99.101}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=3.\left(\frac{1}{1}-\frac{1}{101}\right)=3.\left(\frac{101}{101}-\frac{1}{101}\right)=3.\frac{100}{101}=\frac{300}{101}\)
\(C=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+....+\frac{1}{87}-\frac{1}{90}\right)\)
\(=2.\left(\frac{1}{15}-\frac{1}{90}\right)=2.\left(\frac{6}{90}-\frac{1}{90}\right)=2.\frac{5}{90}=\frac{1}{9}\)
\(A=\frac{3}{4\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{100\cdot104}\)
\(A=\frac{7-4}{4\cdot7}+\frac{11-7}{7\cdot11}+\frac{15-11}{11\cdot15}+...+\frac{104-100}{100\cdot104}\)
\(A=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{100}-\frac{1}{104}\)
\(A=\frac{1}{4}-\frac{1}{104}\)
\(A=\frac{25}{104}\)
\(B=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\)
\(B\cdot2=\left(\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+\frac{1}{29\cdot31}+...+\frac{1}{73\cdot75}\right)\cdot2\)
\(B\cdot2=\frac{2}{25\cdot27}+\frac{2}{27\cdot29}+\frac{2}{29\cdot31}+...+\frac{2}{73\cdot75}\)
\(B\cdot2=\frac{27-25}{25\cdot27}+\frac{29-27}{27\cdot29}+\frac{31-29}{29\cdot31}+...+\frac{75-73}{73\cdot75}\)
\(B\cdot2=\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\)
\(B\cdot2=\frac{1}{25}-\frac{1}{75}\)
\(B\cdot2=\frac{2}{75}\)
\(B=\frac{2}{75}\frac{\cdot}{\cdot}2\)
\(B=\frac{1}{75}\)
D=\(\frac{6}{15.18}\)+\(\frac{6}{18.21}\)+...+\(\frac{6}{87.90}\)
D=2.\(\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
D=2.\(\frac{1}{18}\)
D=\(\frac{1}{9}\)
Vậy D=\(^{\frac{1}{9}}\)
\(D=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(D=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(D=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(D=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(D=2.\left(\frac{6}{90}-\frac{1}{90}\right)\)
\(D=2.\frac{1}{18}\)
\(D=\frac{1}{9}\)
Ta có : \(\frac{1}{15.18}+\frac{1}{18.21}+\frac{1}{21.24}+...+\frac{1}{87.90}\)
= \(\frac{1}{3}\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
= \(\frac{1}{3}\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
= \(\frac{1}{3}\left(\frac{1}{15}-\frac{1}{90}\right)\)
= \(\frac{1}{3}.\frac{1}{18}\)
= \(\frac{1}{54}\)
\(\frac{1}{15.18}+\frac{1}{18.21}+....+\frac{1}{87.90}\)
\(=\frac{1}{3}.\left(\frac{1}{15}-\frac{1}{90}\right)=\frac{1}{54}\)
a,A=\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{23.24}\)
A=\(\frac{1}{2}+\frac{2}{1}-\frac{1}{3}+\frac{3}{1}-\frac{1}{4}+......\frac{23}{1}-\frac{1}{24}\)
A=\(\frac{1}{2}-\frac{1}{24}\)
A=\(\frac{11}{24}\)
Ta có:
\(A=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(A=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(A=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(A=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(A=2.\frac{1}{18}=\frac{1}{9}\)