tính : S = 23 + 33 + 43 + ... + 193 +203
S =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 13+10+23+20+33+30+...+103+100
S = 13+23+33+...+103+10.100
S = 3025+1000
S = 4025
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
45 x 32 + 45 x 23
= 45 x ( 32 + 23 )
= 45 x 55
= 2475
45 : 32 + 45 : 23
= 1,40625 + 1,9566521739
= 3,362771739
43 x 33 + 43 x 22 + 43
= 43 x ( 33 + 22 + 1 )
= 43 x 56
= 2408
45 x 32 + 45 x 23
= 45 x ( 32 + 23 )
= 45 x 55
= 2475
45 : 32 + 45 : 23
= 1,40625 + 1,9566521739
= 3,362771739
43 x 33 + 43 x 22 + 43
= 43 x ( 33 + 22 + 1 )
= 43 x 56
= 2408
a) \(S=1+2+2^2+..+2^{2022}\)
\(2S=2+2^2+2^3+...+2^{2023}\)
\(2S-S=2+2^2+2^3+...+2^{2023}-1-2-2^2-...-2^{2022}\)
\(S=2^{2023}-1\)
b) \(S=3+3^2+3^3+...+3^{2022}\)
\(3S=3^2+3^3+...+3^{2023}\)
\(3S-S=3^2+3^3+....+3^{2023}-3-3^2-...-3^{2022}\)
\(2S=3^{2023}-3\)
\(\Rightarrow S=\dfrac{3^{2023}-3}{2}\)
c) \(S=4+4^2+4^3+...+4^{2022}\)
\(4S=4^2+4^3+...+4^{2023}\)
\(4S-S=4^2+4^3+...+4^{2023}-4-4^2-...-4^{2022}\)
\(3S=4^{2023}-4\)
\(S=\dfrac{4^{2023}-4}{3}\)
d) \(S=5+5^2+...+5^{2022}\)
\(5S=5^2+5^3+...+5^{2023}\)
\(5S-S=5^2+5^3+...+5^{2023}-5-5^2-...-5^{2022}\)
\(4S=5^{2023}-5\)
\(S=\dfrac{5^{2023}-5}{4}\)
\(\frac{\frac{6}{13}-\frac{6}{23}+\frac{6}{33}-\frac{6}{43}}{\frac{5}{13}-\frac{5}{23}+\frac{5}{33}-\frac{5}{43}}\)
= \(\frac{6.\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{33}-\frac{1}{43}\right)}{5.\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{33}-\frac{1}{43}\right)}\)
= \(\frac{6}{5}\)
k cho mình nhé
\(S=23+43+63......+203\)
\(S=26+46+66......+206-3.10\)
\(S=2.13+2.23+3.33......+2.103-3.10\)
\(S=2.\left(13+23+33......+103\right)-3.10\)
\(S=2.580-3.10=1130\)
\(A=\frac{7}{3\times13}+\frac{7}{13\times23}+...+\frac{7}{53\times63}\)
\(A=\frac{7}{10}.\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{13}-\frac{1}{23}\right)+....+\left(\frac{1}{53}-\frac{1}{63}\right)\right]\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+....+\frac{1}{53}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\left(\frac{1}{3}-\frac{1}{63}\right)\)
\(A=\frac{7}{10}.\frac{20}{63}\)
\(A=\frac{2}{9}\)
A=7*(1/3*13+1/13*23+1/23*33+1/33*43+1/43*53+1/53*63)
A=7/10(1/3-1/13+1/13-1/23+1/23-1/33+1/33-1/43+1/43-1/53+1/53-1/63)
A=7/10*(1/3-1/63)
A=7/10*20/63
A=2/9
a, A = 2 10 - 2 5 = 1024 - 32 = 992
b, B = 4 3 - 4 2 - 4 = 64 - 16 - 4 = 44
c, C = 3 2 . 2 3 + 4 3 . 2 5 = 9.8 + 64.32 = 2120
d, D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 = 1 + 8 + 27 + 64 + 125 = 225
\(S=2^3+3^3+4^3+...+19^3+20^3\)
\(S=\left(2+3+4+...+19+20\right)^3\)
\(S=\text{[}\frac{19.\left(20+2\right)}{2}\text{]}^3=209^3\)