K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

(x+y)^2=x^2+y^2+2xy=13^2=169

=> x^2+y^2=169-2xy=169-60=109

=> x^2-2xy+y^2=(x-y)^2=109-60=49

=> (x-y)^2=49 => x-y = 7 hoặc x-y =-7

=> x =7+y hoặc x=-7+y

mà x+y=13

=> y=3 hoặc y=10

=> x=10 hoặc x=3

Vậy (x,y)=(10;3) hoặc (x,y)=(3;10)

4 tháng 8 2016

=> x-y=10-3=7 hoặc x-y=3-10=-7

27 tháng 4 2020

a, do x+y=30 và xy=221 nên u và v là nghiệm của pt :

 x2-30x+221=0

\(\Delta^,\)=225-221=4                     ;\(\sqrt{\Delta^,}\)=2

=> pt có hai nghiệm phân biệt .

x1=13                   ; x2=17

Vậy x=13;y=17 hoặc x=17; y=13

27 tháng 6 2015

          x-y=7

22 tháng 8 2015

a)ta có:

(x+y)2=x2+2xy+y2

=x2-2xy+y2+4xy

=(x-y)2+4.xy

thay x-y=7;xy=60 vào (x-y)2+4.xy ta được:

=72+4.60

=289

=>x+y=17

ta lại có:

x2-y2=(x+y)(x-y)

thay x+y=17;x-y=7 vào x2-y2=(x+y)(x-y) ta được:

x2-y2=17.7=119

b)thay x+y=17;xy=60 vào (x+y)2=x2+2xy+y2 ta được:

172=x2+2.60+y2

289=x2+y2+120

<=>x2+y2=169

ta lại có:

(x2+y2)2=x4+y4+2x2y2

(x2+y2)2=x4+y4+2.(xy)2

thay x2+y2=169;xy=60 vào (x2+y2)2=x4+y4+2.(xy)2 ta được:

1692=x4+y4+2.602

<=>28561=x4+y4+7200

<=>x4+y4=21361

 

16 tháng 10 2024

sai rồi

 

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)

Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:

\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)

Giả sử \(a=\log_yx=3\)\(b=\log_xy=\frac{1}{3}\)

\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D

23 tháng 6 2017

Ta có :

(x + y)2 = (30)2 = 900

<=> x2 + 2xy + y2 = 900

<=> x2 - 2xy + y2 + 4xy = 900

<=> (x - y)2 = 900 - 4.216 = 36

Mà x > y

=> x - y luông dương

=> x - y = 6

=> A = (x + y)(x - y) = 30 . 6 = 180 

23 tháng 6 2017

Ta có:

\(\left(x+y\right)^2=x^2+2xy+y^2=30^2=900\))0

=> \(x^2-2xy+y^2=900-216.4=36\)

=> x-y =6

=> \(x^2-y^2=\left(x+y\right)\left(x-y\right)=30.6=180\)