1-<11,5-10,1+y>:8,4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Thank bạn Ngọc Mai_NBK nha
Mà bạn chắc ko ạ?
Ko có j đou
Ko trl cx đc

\(\Rightarrow x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+\left(1+x^2\right)\left(1+y^2\right)=1\)
\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=0\)
\(\Leftrightarrow x^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+y^2\left(1+x^2\right)=0\)
\(\Leftrightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=0\)
\(\Leftrightarrow x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)

Đường kính của một bánh xe là 0,6 m. Người đi xe đạp sẽ đi được bao nhiêu km, nếu bánh xe lăn trên mặt đất 1000 vòng?

a)\(x^2+\left(y-\frac{1}{10}\right)^4=0\)
Ta thấy: \(\left\{\begin{matrix}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{matrix}\right.\)
\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)
Mà \(x^2+\left(y-\frac{1}{10}\right)^4=0\)
Xảy ra khi \(\left\{\begin{matrix}x^2=0\\\left(y-\frac{1}{10}\right)^4=0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=0\\y=\frac{1}{10}\end{matrix}\right.\)
b)\(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
Ta thấy: \(\left\{\begin{matrix}\left(x-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)
Mà \(\left(x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)
Suy ra \(\left\{\begin{matrix}\left(x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-5=0\\y^2-\frac{1}{4}=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=5\\y=\pm\frac{1}{2}\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}y-x=a>0\\z-y=b>0\end{matrix}\right.\) \(\Rightarrow z-x=a+b\)
Mặt khác do \(\left\{{}\begin{matrix}x\ge0\\z\le2\end{matrix}\right.\) \(\Rightarrow z-x\le2\Rightarrow a+b\le2\)
Ta có: \(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{\left(a+b\right)^2}\)
\(P\ge\frac{1}{2}\left(\frac{4}{a+b}\right)^2+\frac{1}{\left(a+b\right)^2}=\frac{9}{\left(a+b\right)^2}\ge\frac{9}{4}\)
\(P_{min}=\frac{9}{4}\) khi \(a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\)