Cho x>0 thoả mãn x2 + \(\frac{1}{x^2}\)= 7 .Tính A= x5 + \(\frac{1}{x^5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\)
Do x,y\(\ge\)0
Ta có: \(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow x^2+y^2+2xy\ge4xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(*)
Và \(\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)(**)
Áp dụng bất đẳng thức (*) ta có: \(A=\left(\frac{1}{x}+\frac{1}{y}\right)^2+4xy\ge\left(\frac{4}{x+y}\right)^2+4xy=\frac{16}{\left(x+y\right)^2}+4xy\)
Áp dụng bất đẳng thức (**) ta có:\(A\ge\frac{16}{\left(x+y\right)^2}+4xy\ge2\sqrt{\frac{16}{\left(x+y\right)^2}.4xy}=2.\frac{8\sqrt{xy}}{x+y}\ge16\sqrt{xy}\)(do x+y\(\le\)1)
mình đang còn suy nghĩ đây là bản nháp bạn xem thử
Ta có: \(x^2+\frac{1}{x^2}=7\)
\(\Rightarrow x^2+2+\frac{1}{x^2}=9\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=9\)
Mà x>0
\(\Rightarrow x+\frac{1}{x}=3\)
Lại có: \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)\left(x^2-1+\frac{1}{x^2}\right)=3\left(7-1\right)=18\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+x+\frac{1}{x}\)
\(\Rightarrow x^5+\frac{1}{x^5}=7.18-3=123\)