cho 0 < a <hoac = \(\frac{1}{2}\)
tim giá trị nhỏ nhất của B = 2a + \(\frac{1}{^{a^2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 + b2 + c2 < 2
<=> a2 + b2 + c2 < a+ b + c
<=> (a2 - a )+ (b2 - b )+ (c2 - c) < 0
<=> a.(a - 1) + b.(b -1) + c.(c -1) < 0 (*)
Điều này luôn đúng với mọi 0<a<1; 0<b<1; 0<c<1 vì 0<a<1 => a- 1 < 0 => a.(a-1) < 0
tương tự b(b - 1) < 0; c(c -1) < 0
Vậy (*) => đpcm
\(0< a< 1\Rightarrow a-1< 0\Rightarrow a\left(a-1\right)< 0\Rightarrow a^2< a\)
Tương tự: \(b\left(b-1\right)< 0\Rightarrow b^2< b\) ; \(c\left(c-1\right)< 0\Rightarrow c^2< c\)
Cộng vế với vế:
\(a^2+b^2+c^2< a+b+c\Rightarrow a^2+b^2+c^2< 2\) (đpcm)
Theo t thì điều kiện thế này:\(-1< a,b,c< 1\)
Vì \(a+b+c=0;-1< a,b,c< 1\) nên trong các số a,b,c thì tồn tại 2 số có cùng dấu.Giả sử \(a>0;b>0;c< 0\)
\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)
Do \(a+b+c=0;-1< a,b,c< 1\) nên:\(a^2+b^2+c^2< \left|a\right|+\left|b\right|+\left|c\right|\)
\(\Rightarrow a^2+b^2+c^2< a+b-z\)
\(\Rightarrow a^2+b^2+c^2< -2z< 2\)
\(\Rightarrowđpcm\)
Trả koiwf
a . b < 0 => a . b là số nguyên âm.
b < 0 => b là số nguyên âm. Vì nếu a là số nguyên âm thì a . b dương
=> a > 0
Tham khảo chỗ này nè: Tui mới làm xong luôn :))
Câu hỏi của SSBĐ Love HT - Toán lớp 8 - Học toán với OnlineMath
\(0< a< 1\Rightarrow a^2< a\)
Tương tự: \(b^2< b;c^2< c\)
=> a^2+b^2+c^2<a+b+c=2
Ta có: \(0< a< 1\)
\(\Rightarrow a-1< 0\)
\(\Rightarrow a^2-a< 0\left(1\right)\)
Tương tự ta có: \(0< b< 1\Rightarrow b^2-b=a\left(2\right)\)
Và: \(0< c< 1\Rightarrow c^2-c< 0\left(3\right)\)
Cộng: \(\left(1\right)\left(2\right)\left(3\right)\) vế theo vế ta được:
\(a^2+b^2+c^2-a-b-c< 0\)
\(\Leftrightarrow a^2+b^2+c^2< a+b+c\)
\(\Leftrightarrow a^2+b^2+c^2< 2\left(a+b+c=2\right)\)
vì 0<a<1 ;0<b<2 ;0<c<3
=> 1-a > 0 <=> 0<\(\sqrt{1-a}\) < 1
=> 0 <\(\dfrac{\sqrt{1-a}}{a}\) ≤ 1 (1)
c/m tương tự với b,c
=> 0 < \(\dfrac{\sqrt{2-b}}{b}\) ≤ 2 (2)
và 0 < \(\dfrac{\sqrt{3-c}}{c}\) ≤ 3 (3)
Cộng các vế của bđt với nhau
=> 0 < \(\dfrac{\sqrt{1-a}}{a}+\dfrac{\sqrt{2-b}}{b}+\dfrac{\sqrt{3-c}}{c}\) ≤ 6
Vậy GTLN của A là 6
Ta có : \(cotg\alpha=\frac{1}{tan\alpha}=\frac{a^2+b^2}{2ab}\Rightarrow tan\alpha=\frac{sin\alpha}{cos\alpha}=\frac{2ab}{a^2+b^2}\)
\(\Rightarrow tan^2\alpha+1=\frac{sin^2\alpha}{cos^2\alpha}+1=\frac{1}{cos^2\alpha}=\left(\frac{2ab}{a^2+b^2}\right)^2+1\)
\(\Rightarrow cos^2\alpha=\frac{1}{\left(\frac{2ab}{a^2+b^2}\right)^2+1}\)
Tới đây bạn khai căn ra là được nhé (chú ý điều kiện \(0^o< \alpha< 90^o\))
Bạn tham khảo lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-0a1-0b2-0c3tim-gtln-cua-a-dfracsqrt1-aa-dfracsqrt2-bb-dfracsqrt3-ccbai-nay-dung-cauchyminh-suy-nghi.179994478119
C1: Áp dụng bđt Côsi:
\(B=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)
Dấu bằng xảy ra khi \(a=\frac{1}{2}\)
Đề: Cho \(0< a\le\frac{1}{2}\) . Hãy tìm GTNN của \(B=2a+\frac{1}{a^2}\)
\(------------\)
Ta có:
\(B=2a+\frac{1}{a^2}=\left(a+a+\frac{1}{8a^2}\right)+\frac{7}{8a^2}\)
Khi đó, áp dụng bất đẳng thức \(AM-GM\) cho bộ số có ba số thực không âm gồm \(\left(a;a;\frac{1}{8a^2}\right)\) (theo gt)
nên do đó, ta có thể thiết lập bđt đối với biểu thức \(B\) như sau:
\(B\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8a^2}=1\frac{1}{2}+\frac{7}{8a^2}\)
Kết hợp với điều kiện đã cho \(0< a\le\frac{1}{2}\) , ta suy ra được \(\frac{7}{8a^2}\ge\frac{7}{8\left(\frac{1}{2}\right)^2}=3\frac{1}{2}\)
Vậy, \(B\ge1\frac{1}{2}+3\frac{1}{2}=5\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=\frac{1}{2}\)
Vậy, \(B_{min}=5\) khi \(a=\frac{1}{2}\)