K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

Lời giải:
a. Xét hiệu:

$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$

$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$

$\Rightarrow x^3+y^3\geq xy(x+y)$

Dấu "=" xảy ra khi $x=y$

b.

Áp dụng BĐT phần a vô:

$x^3+y^3\geq xy(x+y)$

$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$

$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$

Hoàn toàn tương tự với các phân thức còn lại suy ra:

$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$

Ta có đpcm

Dấu "=" xảy ra khi $x=y=z=1$

29 tháng 4 2019

Ta có : 

\(x=\frac{ax}{yz}+\frac{b}{z}+\frac{c}{y}\)

\(y=\frac{a}{z}+\frac{by}{zx}+\frac{c}{x}\)

\(z=\frac{a}{y}+\frac{b}{x}+\frac{xy}{cz}\)

\(\Rightarrow\)\(x+y+z=\left(\frac{ax}{yz}+\frac{by}{zx}+\frac{cz}{xy}\right)+\frac{b+c}{x}+\frac{c+a}{y}+\frac{a+b}{z}>\frac{b+c}{z}+\frac{c+a}{y}+\frac{a+b}{z}\)

\(\ge\frac{\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2}{x+y+z}\)

\(\Leftrightarrow\)\(\left(x+y+z\right)^2>\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)

\(\Leftrightarrow\)\(x+y+z>\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\) ( đpcm ) 

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết

3 tháng 10 2018

sửa đề: z+4>0

3 tháng 10 2018

Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0

a + b + c = 6

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)

\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)

Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)

9 tháng 2 2019

xin lối phần 2 sai rồi các bạn ko cần làm phần 2 nha <3    :>>