Giải bất phương trình:
|2-x| = 2 - 3x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
ĐKXĐ: \(x\ne1,-1\)
Ta có: \(\dfrac{x-2}{x+1}\ge\dfrac{3x+2}{x-1}-2\)
\(\dfrac{x-2}{x+1}\ge\dfrac{3x+2-2\left(x-1\right)}{x-1}\)
\(\dfrac{x-2}{x+1}-\dfrac{3x+2-2x+2}{x-1}\ge0\)
\(\dfrac{x-2}{x+1}-\dfrac{x+4}{x-1}\ge0\)
\(\dfrac{\left(x-2\right)\left(x-1\right)-\left(x-4\right)\left(x+1\right)}{x^2-1}\ge0\)
\(\dfrac{x^2-3x+2-x^2+3x+4}{x^2-1}\ge0\)
\(\dfrac{6}{x^2-1}\ge0\)
\(\Rightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)(TM)
\(BPT\Leftrightarrow\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\ge\dfrac{\left(3x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow x^2-x-2x+2-3x^2-3x-2x-2-2x^2-2\ge0\)
\(\Leftrightarrow-4x^2-8x-2\ge0\)
\(\Leftrightarrow x^2+2x+\dfrac{1}{2}\ge0\)
\(\Leftrightarrow\left(x+1\right)^2-\dfrac{1}{2}\ge0\)
Vậy bất phương trình luôn đúng \(\forall x\).
Lời giải:
b/
\(\frac{3x+5}{2x^2-5x+3}\geq 0\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x+5\geq 0\\ 2x^2-5x+3>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x+5\leq 0\\ 2x^2-5x+3<0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} x\geq \frac{-5}{3}\\ x>\frac{3}{2}(\text{hoặc}) x< 1\end{matrix}\right.\\ \left\{\begin{matrix} x\leq \frac{-5}{3}\\ 1< x< \frac{3}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow \left[\begin{matrix} x>\frac{3}{2}\\ \frac{-5}{3}\leq x< 1\end{matrix}\right.\ \)
c/
$2x^3+x+3>0$
$\Leftrightarrow 2x^2(x+1)-2x(x+1)+3(x+1)>0$
$\Leftrightarrow (x+1)(2x^2-2x+3)>0$
$\Leftrightarrow (x+1)[x^2+(x-1)^2+2]>0$
$\Leftrightarrow x+1>0$
$\Leftrightarrow x>-1$
x=0
=))lời giải chi tiết với bất phương trình mà x = 0??