Tìm y, biết:
(y2-5y)2 +10.(y2-5y)+24=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)=5x^2+15xy-15xy+10y^2-5y^2+10=5x^2+5y^2+10\)
b) P = 0
=> \(5x^2+5y^2+10=0\)
\(\Rightarrow x^2+y^2=-2\)
Mà: \(x^2+y^2\ge0\)
=> Ko có cặp (x; y) nào thỏa mãn P = 0
P = 10
=> \(5x^2+5y^2+10=10\)
=> \(x^2+y^2=0\)
Mà: \(x^2+y^2\ge0\)
=> x = 0; y = 0
a) Ta có: \(P=x\left(5x+15y\right)-5y\left(3x-2y\right)-5\left(y^2-2\right)\)
\(=5x^2+15xy-15xy+10y^2-5y^2+10\)
\(=10\)
Chọn a: \(x+5y+2\le0\) là bất phương trình bậc nhất 2 ẩn.
a: =x^3+8-1+27x^3=28x^3+7
b: Sửa đề: (2+y)(y^2-2y+4)+(5-y)(25+5y+y^2)
=8+y^3+125-y^3
=133
Ta có y 2 + 5 y + 6 3 y + 6 = 2 y 2 + 5 y − 3 6 y − 3 = y + 3 3 .
b: (x-y)(x^2-2x+y)
\(=x^3-2x^2+xy-x^2y+2xy-y^2\)
\(=x^3-2x^2-x^2y+3xy-y^2\)
c: \(\left(x^2-y\right)\left(x+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y^2-xy-y^3-\left(x^3-y^3\right)\)
\(=x^2y^2-xy\)
d: \(3x\left(2xy-z\right)-5y\left(x^2-2\right)+3xz\)
\(=6x^2y-3xz-5x^2y+10y+3xz\)
\(=x^2y+10y\)
Đặt \(y^2-5y=x\)
Ta có \(x^2+10x+24=x^2+4x+6x+24=x\left(x+4\right)+6\left(x+4\right)=\left(x+4\right)\left(x+6\right)\)
Suy ra x=-4 hoặc x=-6
Với x=-4 thì =>\(y^2-5y=-4\)
Suy ra y= 4 hoặc y=1
Với x=-6 thì =>\(y^2-5y=-6\)
Suy ra y=3 hoặc y=2
Vậy pt đã cho có tập nghiệm \(S=\left\{1;2;3;4\right\}\)
đặt (y2-5y) là NTC ra ngoặc r` rút gọn sau đó tính bt
vì máy mk đg hỏng chuột nên bn dáng tự lm