tìm x,y biết:
10x : 2y=50y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biến đổi: VT=\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2< 1\)
Mà \(x,y\in Z\)Nên VT\(\in Z\)=> VT=0
Vậy: \(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
\(9x^2+42xy+49y^2+x^2+14x+49+y^2-6y+9-1<0\)
\(\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2<1\)
Vậy y=3; x=-7
\(VT=9x^2+2\cdot3x\cdot7y+49y^2+x^2+2\cdot x\cdot7+49+y^2-2\cdot y\cdot3+9-1.\)
\(=\left(3x+7y\right)^2+\left(x+7\right)^2+\left(y-3\right)^2-1\)
VT >= -1 với mọi x;y. Để VT <0 thì :\(\hept{\begin{cases}3x+7y=0\\x+7=0\\y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-7\\y=3\end{cases}}\)
<=> [ (x^2+2xy+y^2)+ 2.(x+y).5 +25 ] + (y^2+2y+1)=0
<=> (x+y+5)^2 + (y+1)^2 = 0
<=> x+y+5 = 0 và y+1 = 0
<=> x=-4 và y=-1
Ta có: x2+2y2+2xy+10x+12y+26=0
=> (x2+2xy+y2)+(10x+10y)+25+(y2+2y+1)=0
=> (x+y)2+10(x+y)+25+(y2+2y+1)=0
=> (x+y+5)2+(y+1)2=0
=> (x+y+5)2=(y+1)2=0
=> x+y+5=y+1=0
(+) y+1=0=> y=-1
(+) x+y+5=0 mà y=-1=> x-1+5=0
=> x+4=0=> x=-4
Vậy (x,y)=(-4;-1)
\(5x^2+2y^2+13+10x+2y\)
\(=5x^2+10x+5+2y^2+2y+\frac{1}{2}+7\frac{1}{2}\)
\(=5\left(x^2+2x+1\right)+2\left(y^2+y+\frac{1}{4}\right)+7\frac{1}{2}\)
\(=5\left(x+1\right)^2+2\left(y+\frac{1}{4}\right)^2+7\frac{1}{2}>0\forall x;y\)
dẫn đến mâu thuẫn so với đề bài.
Vậy \(x,y\in\varnothing\)
Chúc bạn học tốt.
13x- 26xy+ 50y = 1022
13x- ( 26x + 26y ) + 50y = 1022
13y - 26x + 24y = 1022
37y - 26x = 1022
mk chi lam duoc den do thoi
\(13x-26xy+50y=1022\)
\(\Rightarrow13x\left(1-2y\right)+25\left(1-2y\right)=1047\)
\(\Rightarrow\left(1-2y\right)\left(13x+25\right)=1047\)
ta có bảng sau
1-2y | 1 | 1047 | -1 | -1047 | 349 | 3 | -3 | -349 |
13x+25 | 1047 | 1 | -1047 | -1 | 3 | 349 | -349 | -3 |
y | 0 | -523 | 1 | 524 | -174 | -1 | 2 | 175 |
x | loại | loại | loại | -2 | loại | loại | loại | loại |
vậy x= -2 ; y= 524
x=2,y=1
\(x=2,y=1\)
ủng hộ mk nha