K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2016

 Có P = x^2 +y^2-xy-x+y+1 
=> 2A =2x^2 + 2y^2 -2xy -2x +2y+2 =(x^2 -2xy +y^2)+ (x^2 -2x+1) +(y^2 +2y +1) =(x-y)^2 +(x-1)^2 +(y+1)^2 >=0 
=> Min A =0 
Còn lại bạn tự giải nka!@

mk mới học lớp 6 nên chưa biết được nhiều nhak xin lỗi

5 tháng 2 2018

Ta có: \(P=x^2+y^2-xy-x+y+1\)

\(\Rightarrow4P=4x^2+4y-4xy-4x+4y+4\)

\(=\left(4x^2-4xy+y^2\right)-2\left(2x-y\right)+3y^2+2y+4\)

\(=\left(2x-y\right)^2-2\left(2x-y\right)+1+3\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{8}{3}\)

\(=\left[\left(2x-y\right)-1\right]^2+3\left(y+\frac{1}{3}\right)^2+\frac{8}{3}\)

\(=\left(2x-y-1\right)^2+3\left(y+\frac{1}{3}\right)^2+\frac{8}{3}\)

Vậy min4P = \(\frac{8}{3}\Rightarrow minP=\frac{2}{3}\)

\(P_{min}=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}y+\frac{1}{3}=0\\2x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{1}{3}\end{cases}}\)

15 tháng 3 2018

Ta có:  2 x 2 + 1 2 ≥ 2 x ;  2 y 2 + 1 2 ≥ 2 y và  x 2 + y 2 ≥ 2 x y

Cộng vế với vế các BĐT trên ta được:

3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2

=> A =  x 2 + y 2 ≥ 1 2

Từ đó tìm được  A m i n = 1 2 <=> x = y =  1 2

18 tháng 4 2021

Áp dụng BĐT cói cho 2 số ko âm ta có 

X^2+y^2 >= 2 .căn x^2 .y^2 = 2.xy= 2.6 =12 

Vậy P min =12 dấu = xảy ra khi x^2=y^2 <=> x=y 

( thông cảm mình gõ mũ ko đc ) 

24 tháng 5 2021

\(x^2+y^2+xy=3\)

Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)

\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\) 

Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)

mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)

=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1

maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

NV
24 tháng 5 2021

Đặt \(P=x^2+y^2-xy\)

\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)

\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)

\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=y=1\)

\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow P\le9\)

\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

8 tháng 8 2019

23 tháng 4 2017

19 tháng 9 2018

17 tháng 6 2017

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả