K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2017

Chọn D.

Gọi M là trung điểm của AC suy ra

 .

Do tam giác BAM vuông tại A

a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)

MD là phân giác

=>BD/BM=DA/AM

=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1

=>BD=5cm; DA=5cm

b: Xét ΔMBC cóME là phân giác

nên BE/EC=BM/MC=BM/MA=BD/DA

=>DE//AC

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: BH=CH

b: Ta có: BH=CH

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAHB vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay AH=12(cm)

\(\Leftrightarrow AG=8\left(cm\right)\)

c: Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

19 tháng 7 2016

kp nha

a) Sửa đề: Cm AG vuông góc với BC

Ta có: \(AN=NB=\dfrac{AB}{2}\)(N là trung điểm của AB)

\(AM=MC=\dfrac{AC}{2}\)(M là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AN=NB=AM=MC

Xét ΔNBC và ΔMCB có 

NB=MC(cmt)

\(\widehat{NBC}=\widehat{MCB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔNBC=ΔMCB(c-g-c)

Suy ra: \(\widehat{NCB}=\widehat{MBC}\)(hai góc tương ứng)

hay \(\widehat{GBC}=\widehat{GCB}\)

Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)(cmt)

nên ΔGBC cân tại G(Định lí đảo của tam giác cân)

Suy ra: GB=GC(hai cạnh bên)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: GB=GC(cmt)

nên G nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AG là đường trung trực của BC

hay AG\(\perp\)BC(đpcm)