C/m:
B= (n+2).(5n+1) chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b=\left(n^2-n\right)\left(n+1\right)\)
\(=\left(n\cdot n-n\cdot1\right)\left(n+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!\)
=>b chia hết cho 6
\(c=5n^2+5n\)
\(=5n\cdot n+5n\cdot1\)
\(=5n\left(n+1\right)\)
n;n+1 là hai số nguyên liên tiếp
=>\(n\left(n+1\right)⋮2\)
=>\(c=5\cdot n\cdot\left(n+1\right)⋮5\cdot2=10\)
a, \(=>n^2-n-4n+4-3⋮\left(n-1\right)\)
\(=>n\left(n-1\right)-4\left(n-1\right)-3⋮\left(n-1\right)\)
=> (n-1) là ước của 3; Mà Ư(3) = 1;-1;3;-3 nên ta có:
\(\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=3\\n-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=0\\n=4\\n=-2\end{matrix}\right.\)
b, \(=>2n^2+2n-2n-3⋮\left(n+1\right)\)
\(=>2n\left(n+1\right)-2\left(n+1\right)-1⋮\left(n+1\right)\)
=>(n+1) là ước của 1; mà Ư(1)= 1;-1 nên ta có:
\(\left[{}\begin{matrix}n+1=1\\n+1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0\\n=-2\end{matrix}\right.\)
c, \(=>-3n+12=-\left(3n+3\right)+15⋮\left(n+1\right)\)
=>(n+1) là ước của 15;
Bạn làm tương tự nhé;
CHÚC BẠN HỌC TỐT.........
a) n+6 chia hết cho n+2
n+2 chia hết cho n+2
nên (n+6)-(n+2) chia hết cho n+2
4 chia hết cho n-2
=> n-2 = 1;-1;2;-2;4;-4
=> n=3;1;4;0;6
d) n^2 +4 chia hết cho 4
n+1 chia hết cho n+1 nên (n+1)(n+1) chia hết cho n+1 hay n2+2n+1 chia hết cho n+1
=> (n^2+2n+1)-(n^2+4) chia hết cho n-1
=> 2n+1-4 chia hết cho n-1
=> 2n - 3 chia hết cho n-1
n-1 chia hết cho n-1 nên 2n-2 chia hết cho n-1
=> (2n-2)-(2n-3) chia hết cho n-1
=> 1 chia hết cho n-1
=> n-1 = 1;-1
=> n=0
nè bạn
a)(5n+7)(4n+6)
nếu n=2k =>(5.2k+7)(4.2k+6)=(10k+7)(8k+6)
Vì 8k+6 chia hết cho 2 nên (10k+7)(8k+6) chia hết cho 2 (1)
nếu n=2k+1 =>[5.(2k+1)+7].[4.(2k+1)+6]=(10k+5+7).(8k+4+6)=(10k+12).(8k+10) chia hết cho 2 (2)
Từ (1) (2) =>(5n+7).(4n+6) luôn chia hết cho 2
=>đpcm
\(\left(n-5\right)⋮\left(n-2\right)\)
=> \(\left(n-5\right)-\left(n-2\right)⋮\left(n-2\right)\)
=> \(\left(n-5-n+2\right)⋮\left(n-2\right)\)
=> \(-3⋮\left(n-2\right)\)
=> n-2\(\inƯ\left(-3\right)\) ={\(\pm1,\pm3\) }
ta có bảng sau
n-2 | -1 | 1 | -3 |
3 |
n | 1 | 3 | -1 | 5 |
tm | tm | loại | tm |
vậy n\(\in\left\{1;3;5\right\}\)
a) Ta có :
\(7n+3⋮n\)
Mà \(n⋮n\)
\(\Leftrightarrow\left\{{}\begin{matrix}7n+3⋮n\\7n⋮n\end{matrix}\right.\)
\(\Leftrightarrow3⋮n\)
Vì \(n\in N;3⋮n\Leftrightarrow n\inƯ\left(3\right)=\left\{1;3\right\}\)
Vậy ....................
b) Ta có :
\(12n-1⋮4n+2\)
Mà \(4n+2⋮4n+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n-1⋮4n+2\\12n+6⋮4n+2\end{matrix}\right.\)
\(\Leftrightarrow7⋮4n+2\)
Vì \(n\in N\Leftrightarrow4n+2\in N;4n+2\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4n+2=1\\4n+2=7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=\dfrac{-1}{4}\\n=\dfrac{5}{4}\end{matrix}\right.\) \(\left(loại\right)\)
Vậy ....
mình chỉ bt câu a mình học trên lớp thôi bn thông cảm ! :(
a.
Ta có: 7n+3 chia hết cho n => 7n chia hết cho n => 3 chia hết cho n
mà n thuộcN => n thuộc Ư(3)
vậy n thuộc Ư [1;3}
TICK zùm mình nhé!
có hai trường hợp xảy ra:
+) n là số chẵn
=> n +2 là số chẵn, 5n + 1 là số lẻ
=> (n+2).(5n+1) là số chẵn ( vì chẵn . lẻ = chẵn)
=> ( n+2) .( 5n+1) chia hết cho 2
+) n lá số lẻ
=> 5n+1 là số chẵn , n+2 là số lẻ
=> (n+2 ) .( 5n +1) là số chẵn
=> (n+2 ) .( 5n +1) chia hết cho 2
=> đpcm
Xét 2TH:
Vậy từ 2 TH => B luôn chia hết cho 2