tìm GTNN của
x2+4xy+4y2+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(x^2-4x+4\right)-3\)
\(A=\left(x-2y+1\right)^2+\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;\dfrac{3}{2}\right)\)
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
\(x^2+4y^2-4xy-4\)
\(=\left(x^2-4xy+4y^2\right)-4\)
\(=\left(x-2y\right)^2-2^2\)
\(=\left(x-2y-2\right)\left(x-2y+2\right)\)
\(T=-2\left(x^2+y^2+1-2xy+2x-2y\right)-2y^2+8y+2004\)
\(T=-2\left(x-y+1\right)^2-2\left(y-2\right)^2+2012\le2012\)
\(T_{max}=2012\) khi \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Lời giải:
$A=(x^2+4y^2+4xy)+x^2+5-8x-12y$
$=(x+2y)^2-6(x+2y)+x^2+5-2x$
$=(x+2y)^2-6(x+2y)+9+(x^2-2x+1)-5$
$=(x+2y-3)^2+(x-1)^2-5\geq 0+0-5=-5$
Vậy $A_{\min}=-5$. Giá trị này đạt được khi $x+2y-3=x-1=0$
$\Leftrightarrow x=1; y=1$
\(B=x^2+4y+4y^2+8x+42=\left(x^2+8x+16\right)+\left(4y^2+4y+1\right)+25=\left(x+4\right)^2+\left(2y+1\right)^2+25\ge25\)
Dấu = xảy ra khi x = -4; y = -1/2
\(B=x^2+4y+4y^2+8x+42\)
\(B=x^2+8x+16+4y^2+4y+1+25\)
\(B=\left(x+4\right)^2\left(2y+1\right)^2+25\)
GTNN của B là 25
xảy ra khi (x+4)2=0 hoặc (2y+1)2=0
x+4=0 hoặc 2y+1=0
x=-4 hoặc 2y=-1
x= -4 hoặc y=-1/2
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$4y^2+1\geq 4y$
$\Rightarrow x^2+4y^2+5\geq 4(x+y)$
$\Rightarrow P=x^2+4y^2+4xy\geq 4(x+y)-5+4xy=4(x+y+xy)-5=4.\frac{7}{2}-5=9$
Vậy $P_{\min}=9$. Giá trị này đạt tại $x=2; y=\frac{1}{2}$
= (x2 + 4xy + 4y2) + 4
= (x + 2y)2 + 4
(x + 2y)2 \(\ge\)0
=> GTNN = 4