Bài 6. Tìm các số 8a8b thỏa mãn chia hết cho 2 ; 5 và 9 đều dư 2. Các bạn giải nhanh giúp mình nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Để $\overline{2120x}$ chia hết cho $2$ thì $x$ là chữ số tận cùng phải rơi vào các trường hợp $0,2,4,6,8$
b. Để $\overline{3944y}$ chia hết cho $5$ thì $y$ nhận giá trị $0$ hoặc $5$
Bài 1 :
\(\left(7^{2023}-5.7^{2022}\right):7^{2020}\)
\(=7^{2023}:7^{2020}-5.7^{2022}:7^{2020}\)
\(=7^{2023-2020}-5.7^{2022-2020}\)
\(=7^3-5.7\)
\(=7\left(7^2-5\right)\)
\(=7\left(49-5\right)\)
\(=7.44=308\)
Bài 2 : \(n+6⋮n+2\left(n\inℕ\right)\)
\(\Rightarrow n+6-\left(n+2\right)⋮n+2\)
\(\Rightarrow n+6-n-2⋮n+2\)
\(\Rightarrow4⋮n+2\)
\(\Rightarrow n+2\in U\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow n\in\left\{-1;0;2\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\left(n\inℕ\right)\)
Bài 3:
3a, \(19^{8^{1945}}\) Vì 8 ⋮ 2 ⇒ 81945 ⋮ 2 ⇒ 81945 = 2k (k \(\in\) N*)
Ta có: \(19^{8^{1945}}\) = \(19^{2k}\) = \((\)192)k = \(\overline{...1}\)k = 1
3b, 372023 = (374)505. 373 = \(\overline{...1}\)505.\(\overline{..3}\) = \(\overline{...3}\)
3c, 53997 = (534)249.53 = \(\overline{...1}\)249. 53 = \(\overline{...3}\)
3d, 84567 = (842)283.84 = \(\overline{...6}\)283 . 84 = \(\overline{...4}\)
Gọi số cần tìm là ab (a \(\ne0\); a;b < 10)
Theo bài ra ta có: ab chia hết cho 9 và ab chia 5 dư 3
Vì ab chia 5 dư 3 nên ab sẽ có chữ số tận cùng là 3 hoặc 8.
Ta được số: a3 và a8
Để ab chia hết cho 9 thì (a + b) chia hết cho 9 hay (a + 3) và (a + 8) chia hết cho 9
Để a + 3 chia hết cho 9 thì a = 6
Để a + 8 chia hết cho 9 thì a = 1
Vậy hai số cần tìm là 63 và 18
Giả sử a - b chia hết cho 6, tức là tồn tại số nguyên k sao cho a - b = 6k. (1)
a) Chứng minh a + 5b chia hết cho 6:
Ta có:
a + 5b = (a - b) + 6b.
Từ (1), ta thay thế a - b = 6k vào biểu thức trên:
a + 5b = 6k + 6b = 6(k + b).
Vì k + b là một số nguyên, nên a + 5b chia hết cho 6.
b) Chứng minh a - 13b chia hết cho 6:
Tương tự như trường hợp trên, ta có:
a - 13b = (a - b) - 12b.
Thay thế a - b = 6k (theo (1)) vào biểu thức trên:
a - 13b = 6k - 12b = 6(k - 2b).
Vì k - 2b là một số nguyên, nên a - 13b chia hết cho 6.
a, \(a+5b=\left(a-b\right)+6b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\6b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)+6b⋮6\Rightarrow a+5b⋮6\)
b, \(a-13b=\left(a-b\right)-12b\)
Do \(\left\{{}\begin{matrix}a-b⋮6\\-12b⋮6\end{matrix}\right.\Rightarrow\left(a-b\right)-12b⋮6\Rightarrow a-13b⋮6\)
8a8b = b = 0 vì chia hết cho cả 2, 5
8 + a + 8 + 0 = 16 + a => 16 + 2 = 18 mà 18 chia hết cho 9 nên => a = 2
8082 + 2 = 8084 nha!
Hoctot#