Tìm x:
2x(x-2009)-x+2001=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 7x+4=3x+16\(\Leftrightarrow\)4x=12\(\Leftrightarrow\)x=3
b)(x+9)(3x-15)=0\(\Leftrightarrow\)x+9=0 hoặc 3x-15=0
\(\Rightarrow\)x\(\in\){-9;5}
c) |-5x|=2x+21
Nếu x\(\le\)0 thì -5x=2x+21\(\Leftrightarrow\)x=-3 (t/m)
Nếu x>0 thì -5x=-2x-21\(\Leftrightarrow\)x=7 (t/m)
Vậy x\(\in\){-3;7}
d) 3x-5>15-x\(\Leftrightarrow\)4x>20\(\Leftrightarrow\)x>5
e) \(\dfrac{x+1}{2001}+\dfrac{x+5}{2005}< \dfrac{x+9}{2009}+\dfrac{x+13}{2013}\)
\(\Leftrightarrow\dfrac{x+1}{2001}-1+\dfrac{x+5}{2005}-1< \dfrac{x+9}{2009}-1+\dfrac{x+13}{2013}-1\)
\(\Leftrightarrow\)\(\dfrac{x-2000}{2001}+\dfrac{x-2000}{2005}-\dfrac{x-2000}{2009}-\dfrac{x-2000}{2013}< 0\)
\(\Leftrightarrow\)(x-2000)(\(\dfrac{1}{2001}+\dfrac{1}{2005}-\dfrac{1}{2009}-\dfrac{1}{2013}\))<0
Vì \(\dfrac{1}{2001}+\dfrac{1}{2005}-\dfrac{1}{2009}-\dfrac{1}{2013}>0\) nên x-2000<0
\(\Leftrightarrow\)x<2000
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
a: =>|x-2009|=2009-x
=>x-2009<=0
=>x<=2009
b: =>2x-1=0 và y-2/5=0 và x+y-z=0
=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10
\(\dfrac{1}{\left(x+2000\right)\left(x+2001\right)}+\dfrac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\dfrac{1}{\left(x+2009\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2001}+\dfrac{1}{x+2001}-\dfrac{1}{x+2002}+...+\dfrac{1}{x+2009}-\dfrac{1}{x+2010}=\dfrac{10}{11}\)
\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{x+2010-x-2000}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\)
\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{10}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\left(x+2000\right)\left(x+2010\right)=11\\ \Leftrightarrow...\)
-Áp dụng BĐT AM-GM ta có:
\(xy\le\dfrac{\left(x+y\right)^2}{4}\Leftrightarrow xy\le\dfrac{2^2}{4}=1\)
\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{2^2}{2}=2\)
\(A=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2+2001=4x^2+4+\dfrac{1}{x^2}+4y^2+4+\dfrac{1}{y^2}+2001=4\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2009\ge4.2+2.\dfrac{1}{xy}+2009\ge8+2.\dfrac{1}{1}+2009=2019\)
\(A=2019\Leftrightarrow x=y=1\)
-Vậy \(A_{min}=2019\)
a) \(2009-\left|x-2009\right|=x\)
\(\left|x-2009\right|=2009-x\)
\(\Rightarrow\orbr{\begin{cases}x-2009=x-2009\\x-2009=2009-x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\text{đúng với mọi x}\\2x=4018\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\text{đúng với mọi x}\\x=2009\end{cases}}\)
Vậy với mọi x thì đẳng thức luôn đúng
b) Thiếu đề thì phải, ( y- )2018 ?
a)
2009-|x-2009|=x
=> 2009-x=|x-2009|
=> 2009-x=|2009-x|
=> 2009-x=2009-x
vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài
b)
(2x-1)2008+(y-2/5)2008 +|x+y+z|=0
ta có: (2x-1)2008 luôn lớn hơn hoặc bằng 0
(y-2/5)2008 luôn lớn hơn hoặc bằng 0
|x+y+z| luôn lớn hơn hoặc bằng 0
dấu "=" xảy ra khi
2x-1=y-2/5=x+y+z=0
+2x-1=0=> 2x=1=> x=1/2
+y-2/5=0=> y=2/5
+x+y+z=0=> 1/2+2/5+z=0
=> z=-9/10
a) 2009 - |x - 2009| = x
=> |x - 2009| = 2009 - x (1)
ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)
Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)
Vậy x = 0
b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)
\(\text{b)}\)
\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2020}\ge0\)
\(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)
\(\text{Dấu "=" xảy ra khi:}\)
\(\left(2x-1\right)^{2018}=0\)
\(\Rightarrow2x-1\) \(=0\)
\(\Rightarrow2x\) \(=1\)
\(\Rightarrow x\) \(=\frac{1}{2}\)
\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)
\(\Rightarrow y-\frac{2}{5}\) \(=0\)
\(\Rightarrow y\) \(=\frac{2}{5}\)
\(\text{Nhớ k cho mình với nghe}\) :33