K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

Ta sẽ chứng minh bằng biến đổi tương đương như sau : 

Ta có ; \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(luôn đúng)

Vì bđt cuối luôn đúng nên bđt ban đầu được cm.

30 tháng 3 2015

nhân 2 vào 2 vế rồi chuyển vế sau đó khai triển ta được (a-b)(b-c)(c-a) >=0

luôn đúng với mọi a;b;c

suy ra ĐPCM

30 tháng 3 2015

ta có     \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(\(\Rightarrow\)a=b=c)

<=> \(a^2+b^2+c^2\ge ab+bc+ca\)

 

28 tháng 3 2021

xí câu 1:))

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)

Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )

Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=2 => x=y=2

5 tháng 5 2018

ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   với mọi a, b, c

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge ab+bc+ac+2ab+2bc+2ac\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

5 tháng 4 2016

Giả sử:

2a^2 + 2b^2 + 2c^2 > hoặc = 2ab + 2ac + 2bc

<=>( a^2 -2ab + b^2) + (a^2 -2ac + c^2)+(b^2 -2bc + c^2) > hoặc = 0

=<=>(a-b)^2 + (a-c)^2 + (b-c)^2 > hoặc = 0 ( BĐT luôn đúng ) => 2a^2 + 2b^2 + 2c^2 >hoặc = 2ab + 2ac + 2bc là đúng ! <=> a^2 + b^2 + c^2 > hoặc = ab+bc+ac.

Dấu = xảy ra khi : a=b=c

1 tháng 1 2019

Đặt \(ab=x\)\(bc=y\);\(ac=z\)

\(BPT< =>\left(x+y+z\right)^2\ge3\left(xz+xy+yz\right)\)

\(< =>x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\)

\(< =>x^2+y^2+z^2-xy-xz-yz\ge0\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(LĐ\right)\)

10 tháng 9 2016

ta áp dụng cô-si la ra 
a2+b2+c2 ≥ ab+ac+bc 
̣̣(a - b)2 ≥ 0 => a2 + b2 ≥ 2ab (1) 
(b - c)2 ≥ 0 => b2 + c2 ≥ 2bc (2) 
(a - c)2 ≥ 0 => a2 + c2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a2 + b2 + c2) ≥ 2(ab+ac+bc) 
=> a2 + b2 + c2 ≥ ab+ac+bc 
dấu = khi : a = b = c

10 tháng 9 2016

Ta có : \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0..\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\ge0..\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\ge\left(ab+bc+ca\right)\)