K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2022

Đell biết làm

21 tháng 3 2022

??? sao z ?

27 tháng 9 2024

Rffsdffdsff

30 tháng 6 2018

Đặt n+6=a2    n+1=b2 (a,b dương a>b)

=> \(a^2-b^2=5\)=> \(\left(a+b\right)\left(a-b\right)=5\)=> \(\hept{\begin{cases}a+b=5\\a-b=1\end{cases}}\)=> \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)=>\(n=3^2-6=2^2-1=3\)

Mình làm đại đó,ahihi  :v

24 tháng 6 2017

Mình mới lớp 5 thôi nhưng mình sẽ cho bạn 1 câu trả lời

Số 3

Xin lỗi bạn nhé mong bạn thông cảm

25 tháng 6 2017

Đặt \(n+6=a^2;n+1=b^2\)Ta có:

\(a^2-b^2=\left(n+6\right)-\left(n+1\right)\) 

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)=5\)

Ta có bảng: 

a+b 1 5-1-5
a-b 5 1-5-1
a 3 3-3-3
b 2-2 -2 2
a2=n+6 9 9 9 9
b2=n+1 4 4 4 4
n 3 3 3 3
 Thỏa mãnThỏa mãnThỏa mãnThỏa mãn

Vậy n=3

23 tháng 10 2023

#include <bits/stdc++.h>

using namespace std;
long long a[1000006];
long long n;
int main()
{
    for(int i=1;i<=1000006;i++){
        a[i]=i*i;
    }
    cin>>n;
    for(int i=1;i<=n;i++){
        if(a[i]%n==0){cout<<a[i]/n;break;}
    }
    return 0;
}

26 tháng 8 2024

pịa

 

15 tháng 3 2020

Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1

=> 2n chia hết cho 8

=> n chia hết cho 4

=> n chẵn

=> 3n chẵn

=> 3n+1 lẻ

=> 3n+1 chia 8 dư 1

=> 3n chia hết cho 8

=> n chia hết cho 8    (1)

Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4

=> 3n chia 5 dư 4;3 hoặc chia hết cho 5

=> n chia 5 dư 3;1 hoặc chia hết cho 5

- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)

- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)

- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)

=> n chia hết cho 5   (2)

Từ (1) và (2) suy ra n chia hết cho 40

Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương

15 tháng 3 2020

Hello

6 tháng 12 2023

Ta thấy \(87=1.87=3.29\) nên ta xét 2TH

 TH1: \(\left\{{}\begin{matrix}S\left(n\right)=1\\S\left(n+1\right)=87\end{matrix}\right.\)

 Vì \(S\left(n\right)=1\) nên \(n=100...00\), do đó \(n+1=100...01\) nên \(S\left(n+1\right)=2\), mâu thuẫn.

 TH2: \(\left\{{}\begin{matrix}S\left(n\right)=87\\S\left(n+1\right)=1\end{matrix}\right.\)

 Vì \(S\left(n+1\right)=1\) nên \(n+1=100...00\), do đó \(n=999...99\) chia hết cho 9, dẫn đến \(S\left(n\right)⋮9\), mâu thuẫn với \(S\left(n\right)=87\)

 TH3: \(\left\{{}\begin{matrix}S\left(n\right)=3\\S\left(n+1\right)=29\end{matrix}\right.\)

Vì \(S\left(n\right)=3\) nên \(n⋮3\) \(\Rightarrow n+1\) chia 3 dư 1 \(\Rightarrow S\left(n+1\right)\) chia 3 dư 1. Thế nhưng 29 chia 3 dư 2, vô lý.

 TH4: \(\left\{{}\begin{matrix}S\left(n\right)=29\\S\left(n+1\right)=3\end{matrix}\right.\) . Ta lại xét các TH:

   TH4.1: \(n+1=10...010...01\) hoặc \(200...01\) hoặc \(100...2\). Khi đó trong tất cả các TH thì ta đều có \(S\left(n\right)=2\), không thỏa mãn.

   TH4.2: \(n+1=10...010...010...0\) hoặc \(200...0100...0\) hoặc \(100...020...0\) hoặc \(300...00\). Khi đó trong tất cả các TH thì ta đều có\(S\left(n\right)=2+9m\left(m\inℕ\right)\) với m là số chữ số 9 có trong n. Để chọn được số nhỏ nhất, ta chỉ việc lược bỏ tất cả các số 0 ở giữa và cho \(m=3\) để có \(S\left(n\right)=29\). Vậy, ta tìm được \(n=11999\) (thỏa mãn)

 Vậy, số cần tìm là 11999.