Tính A=(1-1/1+2)*(1-1/1+2+3)*...*(1-1/1+2+3+...+2015)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
Cho A = 1/2 + 1/3 + 1/4 + ... + 1/2017 B = 1/2015 + 2/2014 +3/2013 + ...+ 2015/2 + 2016/1 Tính B : A
Ta có: \(\dfrac{B}{A}=\dfrac{\dfrac{1}{2016}+\dfrac{2}{2015}+\dfrac{3}{2014}+...+\dfrac{2015}{2}+\dfrac{2016}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{2}{2015}\right)+\left(1+\dfrac{1}{2016}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{\dfrac{2017}{2017}+\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}\)
\(=\dfrac{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
\(=2017\)
\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{2015}\left(1+2+3+...+2015\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+...+\frac{1}{2015}.2015.2016:2\)
\(=1+\frac{3}{2}+\frac{4}{2}+...+\frac{2016}{2}=\frac{2+3+4+...+2016}{2}=\frac{2033135}{2}\)
C = 1+1/2(1+2)+1/3(1+2+3)+........+1/2015(1+2+3+4+...+2015)
C = 1 + \(\frac{1}{2}\cdot\frac{2.3}{2}\)+ \(\frac{1}{3}\cdot\frac{3.4}{2}\)+ ... + \(\frac{1}{2015}\cdot\frac{2015.2016}{2}\)
C = \(\frac{2}{2}\) + \(\frac{3}{2}+\frac{4}{2}+...+\frac{2016}{2}\)
C = \(\frac{2+3+4+...+2016}{2}\)
Đặt D = 2 + 3 + 4 + ... + 2016
Số số hạng của D là : (2016 - 2) : 1 + 1 = 2015
Tổng D là : (2 + 2016) . 2015 : 2 = 2033135
Thay D vào biểu thức C ta được : \(\frac{2033135}{2}\)
Vậy C = ... .
Câu hỏi của Vũ Lê Ngọc Liên - Toán lớp 6 - Học toán với OnlineMath đây có câu giống nè :)
\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2015}\right)\)
\(A=\frac{2}{\left(1+2\right).2:2}.\frac{5}{\left(1+3\right).3:2}...\frac{\left(1+2015\right).2015:2-1}{\left(1+2015\right).2015:2}\)
\(A=\frac{2}{2.3:2}.\frac{5}{3.4:2}...\frac{2016.2015:2-1}{2015.2016:2}\)
\(A=\frac{4}{2.3}.\frac{10}{3.4}.\frac{\left(1008.2015-1\right).2}{2015.2016}\)
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{2014.2017}{2015.2016}\)
\(A=\frac{1.2...2014}{2.3...2015}.\frac{4.5...2017}{3.4...2016}\)
\(A=\frac{1}{2015}.\frac{2017}{3}=\frac{2017}{6045}\)