Tìm số nguyên n sao cho: n2 + 3n - 13 chia hết cho n + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2 + 3n - 13 chia hết cho n + 3
=> n(n+3) - 13 chia hết cho n+3
Vì n(n+3) chia hết cho n+3
=> -13 chia hết cho n+3
=> n+3 thuộc Ư(-13)
=> n+3 thuộc {-13; -1; 1; 13}
=> n thuộc {-16; -4; -2; 10}
n2 + n3 - 13 chia hết cho n + 3
<=> n.(n+3) - 13 Chia hết cho n + 3
mà n.(n+3) chia hết cho n+3
=) 13 chia hết cho n+3
=) n+3 Thuộc Ư(13) = (-13 ;-1;1;13)
=) n thuộc (-16;-4;-;2;10 )
Vậy giá trị nhỏ nhất của N là - 16
\(n^2+3n-13\) \(⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)-13⋮n+3\)
Mà n(n+3) chia hết cho n+3
\(\Rightarrow\left(n+3\right)\inƯ\left(13\right)=\left(-13;-1;1;13\right)\)
\(\Rightarrow n\in\left(-16;-4;-2;10\right)\)
Vậy \(GTNN\)của \(n=-16\)
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=1-\frac{13}{n+3}\)
Để \(n^2+3n-13\) chia hết cho n+3 thì 13 phải chia hết cho n+3 hay n+3 là ước của 13
=> n+3={-13; -1; 1; 13} => n={-16; -4; -2; 10}
\(n^2+3⋮n-1\)
\(\Rightarrow n\left(n-1\right)+n+3⋮n-1\)
\(\Rightarrow n+3⋮n-1\)
\(\Rightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)
Vậy.......................................
a) n^2 + 3n - 13 chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
n(n + 3) chia hết cho n + 3
Nên 13 chia hết cho n + 3
Tự tìm nhé!
n2 + 3n - 13 chia hết cho n + 3
n(n + 3) - 13 chia hết cho n + 3
n(n + 3) chia hết cho n +3
< = > 13 chia hết cho n + 3
n + 3 thuộc U(13) = {-13;-1;1;13}
n + 3= -13 => n = -16
n + 3 = -1 => n = -4
n + 3 = 1 => n = -2
n + 3 = 13 => n = 10
Ta có
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=n-\frac{13}{n+3}\)
Để \(n^2+3n-13\)chia hết \(n+3\)
Thì 13 chia hết cho n+3
Hay n+3 thuộc Ư(13)
n+3=(-13;-1;1;13)
n=(-16;-4;-2;10)
Nếuthấy bài làm của mình đúng thì tick nha bạn.Chúc bạn một năm mới hanh phúc,vui vẻ,học giỏi,mạnh khoẻ nha...
a) Đặt \(A=\frac{3n-13}{n+3}=\frac{3\left(n+3\right)-22}{n+3}=3-\frac{22}{n+3}\)
=> 22 \(⋮\)n + 3 => n + 3 \(\in\)Ư(22) = { \(\pm1;\pm2;\pm11;\pm22\)}
n + 3 | 1 | -1 | 2 | -2 | 11 | -11 | 22 | -22 |
n | -2 | -4 | -1 | -5 | 8 | -14 | 19 | -25 |
b) Đặt \(B=\frac{2n+3}{n-1}=\frac{2\left(n-1\right)+5}{n-1}=2+\frac{5}{n-1}\)
=> 5 \(⋮\)n - 1 => n - 1 \(\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n - 1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
\(\left(a\right)3n-13⋮n+3\)
\(3n-13=3\left(n+3\right)-22\)
\(=>n+3=Ư\left(22\right)\)
\(n+3=\left\{-22;-11;-2;-1;1;2;11;22\right\}\)
\(=>n=\left\{-25;-14;-5;-4;-2;-1;8;19\right\}\)
\(\left(b\right)2n+3⋮n-1\)
\(2n+3=2\left(n-1\right)+5\)
\(=>n-1=Ư\left(5\right)\)
\(n-1=\left\{-5;-1;1;5\right\}\)
\(=>n=\left\{-4;0;2;6\right\}\)
n2 + 3n - 13 chia hết cho n + 3
=> n.(n + 3) - 13 chia hết cho n + 3
Vì n.(n + 3) chia hết cho n + 3 => 13 chia hết cho n + 3
=> \(n+3\in\left\{1;-1;13;-13\right\}\)
=> \(n\in\left\{-2;-4;10;-16\right\}\)
n2 + 3n - 13 chia hết cho n + 3
=> n(n + 3) - 13 chia hết cho n + 3
Vì n + 3 chia hết cho n + 3
=> -13 chia hết cho n + 3
=> n + 3 thuộc Ư(-13)
=> n + 3 thuộc {-13; -1; 1; 13}
=> n thuộc {-16; -4; -2; 10}