chứng minh 18n+5 không chia hết 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử A=4n3 - 6n2 + 3n + 37 chia hết cho 125 với mọi n là số tự nhiên .
-> 4n3 - 6n2 + 3n + 37 chia hết cho 5
-> 2(4n3 - 6n2 + 3n + 37) chia hết cho 5
-> (2n-1)3 +75 chia hết cho 5
-> (2n-1)3 chia hết cho 5 -> 2n-1 chia hết cho 5 -> (2n-1)3 chia hết cho 125 nhưng 75 không chia hết cho 125 -> 2A không chia hết cho 125 -> A không chia hết cho 125 (trái giả thiết)
-> đpcm
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Chứng minh J = 10 n + 18 n − 1 chia hết cho 9. Bước 2. Chứng minh J = 10 n + 18 n − 1 chia hết cho 3. |
Ta có: J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n => J chia hết cho 9. +) Chứng minh 11...1 + 2 n ⋮ 3 . Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n . Suy ra 11...1 và n có cùng số dư trong phép chia cho 3. => 11...1-n chia hết cho 3. => (11...1+2n) ⋮ 3
⇒
J
⋮
27
|