Chứng minh rằng:A=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81+1/100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/22+1/32+...+1/92
Ta có:1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10
⇒A>1/2.3+1/3.4+...+1/9.10
A>1/2-1/3+1/3-1/4+...+1/9-1/10
A>1/2-1/10
A>2/5(đpcm)
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
a, A là cộng theo số lẻ ( 1 + 3 = 4 ,4 + 5 = 9.....) bắt đầu từ 3
b , B là mỗi lần cộng thêm 6
c , A là cộng theo số lẻ ( 1 + 3 = 4 ,4 + 5 = 9.....)
d, B là cộng theo số chẵn bắt đầu từ 4
hok tốt
\(\dfrac{1}{10}+\dfrac{4}{20}+\dfrac{9}{30}+\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
\(=\dfrac{1}{10}+\dfrac{1}{5}+\dfrac{3}{10}+\dfrac{2}{5}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{7}{10}+\dfrac{4}{5}+\dfrac{9}{10}\)
\(=\left(\dfrac{1}{10}+\dfrac{3}{10}+\dfrac{7}{10}+\dfrac{9}{10}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+\dfrac{1}{2}\)
\(=2+2+\dfrac{1}{2}\)
\(=4+\dfrac{1}{2}\)
\(=\dfrac{8}{2}+\dfrac{1}{2}=\dfrac{9}{2}\)
`Answer:`
Mình bổ sung đề là: Chứng minh rằng `A<1` nữa nhé. Nếu đề mình bổ sung sai thì bạn nói để mình làm lại theo đề đúng.
Ta có:
\(4>1.2\Rightarrow\frac{1}{4}< \frac{1}{1.2}\)
\(9>2.3\Rightarrow\frac{1}{9}< \frac{1}{2.3}\)
\(16>3.4\Rightarrow\frac{1}{16}< \frac{1}{3.4}\)
...
\(100>9.10\Rightarrow\frac{1}{100}< \frac{1}{9.10}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A< 1-\frac{1}{10}< 1\)
\(\Rightarrow A< 1\)