0,125 x m - 3 x n + 3 x m x n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)\(M\left(x\right)=x^4-2x^3+x^2-5x+1\)
\(N\left(x\right)=8x^4-5x^3+x^2-3\)

a. M(x) = x2 -5x -2x3 + x4 + 1
= x4 - 2x3 + x2 - 5x + 1
N(x) = -5x3 -3 + 8x4 + x2
= 8x4 - 5x3 + x2 - 3
b. M(x) + N(x) = x4 - 2x3 + x2 - 5x + 1 + 8x4 - 5x3 + x2 - 3
= (x4 + 8x4) + (-2x3 - 5x3) + (x2 + x2 ) - 5x + (1 - 3)
= 9x4 - 7x3 + 2x2 - 5x - 2
M (x) - N (x) = x4 - 2x3 + x2 - 5x + 1 - ( 8x4 - 5x3 + x2 - 3)
= x4 - 2x3 + x2 - 5x + 1 - 8x4 + 5x3 - x2 + 3
= (x4 - 8x4 ) + ( -2x3 + 5x3 ) + (x2 - x2 ) - 5x + (1 + 3)
= -7x4 + 3x3 - 5x + 4

a) \({x^5}:{x^3} = {x^{5 - 3}} = {x^2}\);
b) \((4{x^3}):{x^2} = (4:1).({x^3}:{x^2}) = 4x\);
c) \((a{x^m}):(b{x^n}) = (a:b).({x^m}:{x^n}) = (a:b).{x^{m - n}}\)(a ≠ 0; b ≠ 0; m, n \(\in\) N, m ≥ n).

1: P(x)=M(x)+N(x)
=-2x^3+x^2+4x-3+2x^3+x^2-4x-5
=2x^2-8
2: P(x)=0
=>x^2-4=0
=>x=2 hoặc x=-2
3: Q(x)=M(x)-N(x)
=-2x^3+x^2+4x-3-2x^3-x^2+4x+5
=-4x^3+8x+2

Cho hai đa thức:
M(x) = 2x^{3}-9x+5 và N(x) = 2x^{3}+4x^{2}-3
a) Tính M(x) - N(x) b) Tính N(x) - M(x)
a, Ta có : \(M\left(x\right)-N\left(x\right)=\left(2x^3-9x+5\right)-\left(2x^3+4x^2-3\right)\)
\(=2x^3-9x+5-2x^3-4x^2+3\)
\(=\left(2x^3-2x^3\right)-9x-4x^2+\left(5+3\right)\)
\(=0-4x^2-9x+8=-4x^2-9x+8\)
b, Ta có : \(N\left(x\right)-M\left(x\right)=\left(2x^3+4x^2-3\right)-\left(2x^3-9x+5\right)\)
\(=2x^3+4x^2-3-2x^3+9x-5\)
\(=\left(2x^3-2x^3\right)+4x^2+9x-\left(3+5\right)\)
\(=4x^2+9x-8\)

a. M(x) + N(x) = 3x3 - 3x + x2 + 5 + 2x2 - x + 3x3 + 9
= (3x3 + 3x3) + ( x2 + 2x2 ) + ( -3x - x ) + (5 + 9)
= 6x3 + 3x2 - 4x + 14
b. M(x) + N(x) - P(x) = 6x3 + 3x2 + 2x
=> 6x3 + 3x2 - 4x + 14 - P(x) = 6x3 + 3x2 + 2x
=> 6x3 + 3x2 - 4x + 14 - ( 6x3 + 3x2 + 2x) = P(x)
=> 6x3 + 3x2 - 4x + 14 - 6x3 - 3x2 - 2x = P(x)
=> (6x3 - 6x3 ) + (3x2 - 3x2 ) + (-4x - 2x ) + 14 = P(x)
=> -6x + 14 = P(x)
Ta có : -6x + 14 = 0
=> -6x = -14
=> x = 7/3
=> Đa thức P(x) = -6x + 14 có nghiệm là 7/3
=>

a/Ta có: M(x)+N(x) = (2x5 - 4x3 + 2x2 + 10x - 1) + (-2x5 + 2x4 + 4x3 + x2 + x - 10)
= 2x5 - 2x5 - 4x3 + 4x3 + 2x4 + 2x2 + x2 + 10x + x -1 - 10
= 2x4 + 3x2 + 11x - 11
b/ Ta có: A(x) = N(x)-M(x) = (-2x5 + 2x4 + 4x3 + x2 + x - 10) - (2x5 - 4x3 + 2x2 + 10x - 1)
= -2x5 - 2x5 + 2x4 + 4x3 + 4x3 + x2 - 2x2 + x - 10x -10 + 1
= -2x5 + 2x4 + 8x3 - x2 - 9x -9

\(a;M\left(x\right)+N\left(x\right)=\left(2x^3-5x^2+x-2\right)+\left(-3x^3+5x^2-x+1\right)\)
\(=2x^3-5x^2+x-2-3x^3+5x^2-x+1\)
\(=-x^3-1\)
\(b;M\left(x\right)-N\left(x\right)=\left(2x^3-5x^2+x^2-2\right)-\left(-3x^3+5x^2-x+1\right)\)
\(=2x^3-5x^2+x-2+3x^3-5x^2+x-1\)
\(=5x^3-10x^2+2x-3\)
\(c;3N\left(x\right)-2M\left(x\right)=3\left(2x^3-5x^2+x-2\right)-2\left(-3x^3+5x^2-x+1\right)\)
\(=6x^3-15x^2+3x-6+6x^3-10x^2+2x-2\)
\(=12x^3-25x^2+5x-8\)

\(A=m^2\left(m+n\right)-n^2m-n^3\)
\(=m^2\left(m+n\right)-n^2\left(m+n\right)\)
\(=\left(m^2-n^2\right)\left(m+n\right)\)
Thay \(m=-2017;n=2017\) vào A , ta được :
\(A=\left[\left(-2017\right)^2-2017^2\right]\left(-2017+2017\right)=0\)
Vậy \(A=0\) tại \(m=-2017;n=2017\)
\(B=x^3-3x^2-x\left(3-x\right)\)
\(=x^2\left(x-3\right)+x\left(x-3\right)\)
\(=\left(x^2+x\right)\left(x-3\right)\)
\(=x\left(x+1\right)\left(x-3\right)\)
Thay \(x=13\) vào B , ta được :
\(13\left(13+1\right)\left(13-3\right)=13.14.10=1820\)
Vậy \(B=1820\) tại \(x=13\)

=p+px3+mx3+m+2xn+nx2
=4xp+4xm+4xn
=4x(p+m+n)
=4x2020=8080
Nhấn **** cho mình nha!