Cho đa thức f(x)=ax^2+bx+c với a,b,c là các số thực.Biết f(0); f(1); f(2) có giá trị nguyên.CMR: 2a,2b có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)
\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên
\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)
\(\Rightarrow2b\) nguyên
\(\Rightarrowđpcm\)
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)
\(a\ne0\)
\(f\left(1\right)=2\)
\(\Rightarrow a+b=2\)
\(f\left(3\right)=8\)
\(\Rightarrow3a+b=8\)
\(\Rightarrow2a+a+b=8\)
\(\Rightarrow2a=6\)
\(\Rightarrow a=3\)
\(\Leftrightarrow b=-1\)
Vậy đa thức đã cho là \(f\left(x\right)=3x-1\)
a≠0
ƒ (1)=2
⇒a+b=2
ƒ (3)=8
⇒3a+b=8
⇒2a+a+b=8
⇒2a=6
⇒a=3
⇔b=−1
Vậy đa thức đã cho là ƒ (x)=3x−1
Nếu f(1)=2 thì:
\(2+a+b+6=2\)
\(\Rightarrow a+b=-6\)
Nếu f(-1)=12 thì:
\(-2+a-b+6=12\)
\(\Rightarrow a-b=8\)
Giá trị a và b thoả mãn là rất lớn nên mình không lập bảng.
Cho f(x)=ax^2+bx+c với a,b,c là số hữu tỉ .Biết 13a+b+2c>0
Chứng Minh: trong 2 biểu thức f(-2);f(3) ít nhất có 1 biểu thức dương
hãy tích khi ko muốn tích nha các bạn
đùa thui!!!